Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurorobot ; 18: 1291694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410142

RESUMO

Human teams are able to easily perform collaborative manipulation tasks. However, simultaneously manipulating a large extended object for a robot and human is a difficult task due to the inherent ambiguity in the desired motion. Our approach in this paper is to leverage data from human-human dyad experiments to determine motion intent for a physical human-robot co-manipulation task. We do this by showing that the human-human dyad data exhibits distinct torque triggers for a lateral movement. As an alternative intent estimation method, we also develop a deep neural network based on motion data from human-human trials to predict future trajectories based on past object motion. We then show how force and motion data can be used to determine robot control in a human-robot dyad. Finally, we compare human-human dyad performance to the performance of two controllers that we developed for human-robot co-manipulation. We evaluate these controllers in three-degree-of-freedom planar motion where determining if the task involves rotation or translation is ambiguous.

2.
Anal Chem ; 75(14): 3518-30, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-14570206

RESUMO

A sol-gel chemistry-based method was developed for the preparation of highly stable capillary gas chromatography (GC) columns with surface-bonded poly(ethylene glycol) (PEG) stationary phase. Through a single-step procedure, it concurrently provided column deactivation, stationary-phase coating, and chemical immobilization of the coated film. Sol-gel reactions were carried out within fused-silica capillaries that were filled with properly designed sol solutions containing two sol-gel precursors, two different triethoxysilyl-derivatized poly(ethylene glycol)s, two sol-gel catalysts, and a deactivation reagent. Hydrolytic polycondensation reactions led to the formation of a sol-gel coating chemically bonded to the inner walls of the capillary. A number of sol-gel coated fused-silica capillary columns were prepared using sol-gel-active PEG derivatives. These columns demonstrated many inherent advantages, the main being the strong anchoring of the coating to the capillary wall resulting from chemical bonding with the silanol groups on the fused-silica capillary inner surface. This chemical bonding yielded strongly immobilized PEG coatings with outstanding thermal stability (up to 320 degrees C). To our knowledge, such a high thermal stability has not been achieved so far on conventionally prepared PEG GC columns. Sol-gel PEG columns provided excellent chromatographic performances: high number of theoretical plates, excellent run-to-run and column-to-column reproducibility, and pronounced selectivity for a wide range of test solutes. Using n-octadecane as a test solute (k = 7.14), an efficiency value of 3200 theoretical plates/m was obtained on a 10 m x 0.25 mm i.d. fused-silica capillary column. Five sol-gel PEG columns provided RSD values of 1.09% for column efficiency (solute, n-octadecane), 1.37% for retention factor (solute, n-octadecane), and 0.9% for separation factor (for solute pair o- and p-xylene). In five replicate measurements using the same column, RSD values of less than 0.50% for the retention time and 1.36% for retention factor (k) were obtained.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa