Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338656

RESUMO

Amyloid beta 1-42 (Aß42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17ß-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17ß-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aß42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aß42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aß42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aß42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aß42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.


Assuntos
Estradiol , Potenciação de Longa Duração , Ratos , Animais , Estradiol/farmacologia , Estradiol/metabolismo , Peptídeos beta-Amiloides/metabolismo , Memantina/farmacologia , Hipocampo/metabolismo , Glutamatos/metabolismo
2.
Mol Psychiatry ; 26(6): 1928-1944, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33402706

RESUMO

Human mutations and haploinsufficiency of the SHANK family genes are associated with autism spectrum disorders (ASD) and intellectual disability (ID). Complex phenotypes have been also described in all mouse models of Shank mutations and deletions, consistent with the heterogeneity of the human phenotypes. However, the specific role of Shank proteins in synapse and neuronal functions remain to be elucidated. Here, we generated a new mouse model to investigate how simultaneously deletion of Shank1 and Shank3 affects brain development and behavior in mice. Shank1-Shank3 DKO mice showed a low survival rate, a developmental strong reduction in the activation of intracellular signaling pathways involving Akt, S6, ERK1/2, and eEF2 during development and a severe behavioral impairments. Our study suggests that Shank1 and Shank3 proteins are essential to developmentally regulate the activation of Akt and correlated intracellular pathways crucial for mammalian postnatal brain development and synaptic plasticity. Therefore, Akt function might represent a new therapeutic target for enhancing cognitive abilities of syndromic ASD patients.


Assuntos
Transtorno do Espectro Autista , Proteínas Proto-Oncogênicas c-akt , Animais , Transtorno do Espectro Autista/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Sinapses
3.
Brain ; 144(11): 3477-3491, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34297092

RESUMO

Misfolding and aggregation of α-synuclein are specific features of Parkinson's disease and other neurodegenerative diseases defined as synucleinopathies. Parkinson's disease progression has been correlated with the formation and extracellular release of α-synuclein aggregates, as well as with their spread from neuron to neuron. Therapeutic interventions in the initial stages of Parkinson's disease require a clear understanding of the mechanisms by which α-synuclein disrupts the physiological synaptic and plastic activity of the basal ganglia. For this reason, we identified two early time points to clarify how the intrastriatal injection of α-synuclein-preformed fibrils in rodents via retrograde transmission induces time-dependent electrophysiological and behavioural alterations. We found that intrastriatal α-synuclein-preformed fibrils perturb the firing rate of dopaminergic neurons in the substantia nigra pars compacta, while the discharge of putative GABAergic cells of the substantia nigra pars reticulata is unchanged. The α-synuclein-induced dysregulation of nigrostriatal function also impairs, in a time-dependent manner, the two main forms of striatal synaptic plasticity, long-term potentiation and long-term depression. We also observed an increased glutamatergic transmission measured as an augmented frequency of spontaneous excitatory synaptic currents. These changes in neuronal function in the substantia nigra pars compacta and striatum were observed before overt neuronal death occurred. In an additional set of experiments, we were able to rescue α-synuclein-induced alterations of motor function, striatal synaptic plasticity and increased spontaneous excitatory synaptic currents by subchronic treatment with l-DOPA, a precursor of dopamine widely used in the therapy of Parkinson's disease, clearly demonstrating that a dysfunctional dopamine system plays a critical role in the early phases of the disease.


Assuntos
Plasticidade Neuronal/fisiologia , Doença de Parkinson/fisiopatologia , Substância Negra/fisiopatologia , Transmissão Sináptica/fisiologia , alfa-Sinucleína/toxicidade , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
4.
Acta Derm Venereol ; 101(2): adv00382, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426564

RESUMO

Granular deposits of IgA represent the specific cutaneous marker of dermatitis herpetiformis. The prevalence of IgA deposits in the skin of patients with coeliac disease without dermatitis herpetiformis remains unknown. In this prospective case-control study, skin biopsies from newly diagnosed coeliac patients without dermatitis herpetiformis were analysed by direct immunofluorescence. Controls included healthy volunteers and patients with both bowel symptoms and skin eruptions unrelated to coeliac disease. Clinical data and serum level of anti-tissue transglutaminase and anti-epidermal transglutaminase IgA antibodies were collected from patients and controls. Granular deposits of IgA or IgA1 in the skin were found in 29 out of 45 patients with coeliac disease (64.4%), and in none of the included controls (specificity 100%; sensitivity 64.4%). Positive direct immunofluorescence correlated significantly with an increased serum level of anti-epidermal transglutaminase IgA antibodies (p < 0.005). This study shows that granular deposits of IgA represent a low sensitive, but highly specific, cutaneous marker of coeliac disease independent of dermatitis herpetiformis.


Assuntos
Doença Celíaca , Dermatite Herpetiforme , Estudos de Casos e Controles , Doença Celíaca/diagnóstico , Dermatite Herpetiforme/diagnóstico , Humanos , Imunoglobulina A , Estudos Prospectivos
5.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575917

RESUMO

Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.


Assuntos
Suscetibilidade a Doenças , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Animais , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental , Humanos , Inflamação , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Esclerose Múltipla/diagnóstico
6.
Neurobiol Dis ; 140: 104848, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32222474

RESUMO

Energy depletion caused by ischemic brain insults may result in persistent neuronal depolarization accompanied by hyper-stimulation of ionotropic glutamate receptors and excitotoxic phenomena, possibly leading to cell death. The use of glutamate receptor antagonists, such as the AMPARs antagonist Perampanel (PER), might be a pharmacological approach to counteract the excessive over-activation of glutamate receptors providing neuroprotective effects. Using electrophysiological and molecular analyses, we investigated the effect of PER against in vitro ischemia obtained by oxygen and glucose deprivation (OGD) in rat slices of two brain structures particularly sensitive to ischemic insults, the nucleus striatum and the hippocampus. We found that in these regions PER was able to avoid the OGD-induced neuronal suffering, at low doses not reducing basal excitatory synaptic transmission and not altering long-term potentiation (LTP) induction. Furthermore, in both the analysed regions, PER blocked a pathological form of LTP, namely ischemic LTP (iLTP). Finally, we hypothesized that the protective effect of PER against OGD was due to its capability to normalize the altered synaptic localization and function of AMPAR subunits, occuring after an ischemic insult. Taken together these findings support the idea that PER is a drug potentially effective to counteract ischemic damage.


Assuntos
Isquemia Encefálica/fisiopatologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piridonas/farmacologia , Receptores de AMPA/metabolismo , Animais , Morte Celular , Corpo Estriado/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores , Nitrilas , Ratos , Ratos Wistar , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/fisiologia
7.
Brain ; 142(5): 1365-1385, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30927362

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of α-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, α-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that α-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of α-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting α-synuclein prevents the α-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease.


Assuntos
Corpo Estriado/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memória Espacial/fisiologia , Sinapses/fisiologia , Percepção Visual/fisiologia , alfa-Sinucleína/toxicidade , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Memória Espacial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos , alfa-Sinucleína/administração & dosagem
8.
Mov Disord ; 34(6): 832-844, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30759320

RESUMO

OBJECTIVE: Spreading depolarization (SD) is a transient self-propagating wave of neuronal and glial depolarization coupled with large membrane ionic changes and a subsequent depression of neuronal activity. Spreading depolarization in the cortex is implicated in migraine, stroke, and epilepsy. Conversely, spreading depolarization in the striatum, a brain structure deeply involved in motor control and in Parkinson's disease (PD) pathophysiology, has been poorly investigated. METHODS: We characterized the participation of glutamatergic and dopaminergic transmission in the induction of striatal spreading depolarization by using a novel approach combining optical imaging, measurements of endogenous DA levels, and pharmacological and molecular analyses. RESULTS: We found that striatal spreading depolarization requires the concomitant activation of D1-like DA and N-methyl-d-aspartate receptors, and it is reduced in experimental PD. Chronic l-dopa treatment, inducing dyskinesia in the parkinsonian condition, increases the occurrence and speed of propagation of striatal spreading depolarization, which has a direct impact on one of the signaling pathways downstream from the activation of D1 receptors. CONCLUSION: Striatal spreading depolarization might contribute to abnormal basal ganglia activity in the dyskinetic condition and represents a possible therapeutic target. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Corpo Estriado/fisiopatologia , Neurônios Dopaminérgicos/fisiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/farmacologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Antiparkinsonianos/farmacologia , Corpo Estriado/efeitos dos fármacos , Compostos de Mostarda Nitrogenada/metabolismo , Prednisolona/metabolismo , Procarbazina/metabolismo , Ratos , Ratos Wistar , Vincristina/metabolismo
9.
Cephalalgia ; 39(10): 1333-1338, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30922082

RESUMO

INTRODUCTION: Familial hemiplegic migraine 2 is a pathology linked to mutation of the ATP1A2 gene producing loss of function of the α2 Na+/K+-ATPase (NKA). W887R/+ knock-in (KI) mice are used to model the familial hemiplegic migraine 2 condition and are characterized by 50% reduced NKA expression in the brain and reduced rate of K+ and glutamate clearance by astrocytes. These alterations might, in turn, produce synaptic changes in synaptic transmission and plasticity. Memory and learning deficits observed in familial hemiplegic migraine patients could be ascribed to a possible alteration of hippocampal neuronal plasticity and measuring possible changes of long-term potentiation in familial hemiplegic migraine 2 KI mice might provide insights to strengthen this link. RESULTS: Here we have investigated synaptic plasticity in distinct hippocampal regions in familial hemiplegic migraine 2 KI mice. We show that the dentate gyrus long-term potentiation of familial hemiplegic migraine 2 mice is abnormally increased in comparison with control animals. Conversely, in the CA1 area, KI and WT mice express long-term potentiation of similar amplitude. CONCLUSIONS: The familial hemiplegic migraine 2 KI mice show region-dependent hippocampal plasticity abnormality, which might underlie some of the memory deficits observed in familial migraine.


Assuntos
Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Enxaqueca com Aura/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Camundongos , Enxaqueca com Aura/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética
10.
Neurobiol Dis ; 113: 97-108, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29325869

RESUMO

During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Animais , GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico/antagonistas & inibidores , Técnicas de Cultura de Órgãos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Azida Sódica/farmacologia , Azida Sódica/uso terapêutico
11.
Neurobiol Dis ; 118: 1-8, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29908325

RESUMO

Among genetic abnormalities identified in Parkinson's disease (PD), mutations of the leucine-rich repeat kinase2 (LRRK2) gene, such as the G2019S missense mutation linked to enhanced kinase activity, are the most common. While the complex role of LRRK2 has not been fully elucidated, evidence that mutated kinase activity affects synaptic transmission has been reported. Thus, our aim was to explore possible early alterations of neurotransmission produced by the G2019S LRRK2 mutation in PD. We performed electrophysiological patch-clamp recordings of striatal spiny projection neurons (SPNs) in the G2019S-Lrrk2 knock-in (KI) mouse model of PD, in D1994S kinase-dead (KD), Lrrk2 knock-out (KO) and wild-type (WT) mice. In G2019S Lrrk2 KI mice, basal spontaneous glutamatergic transmission, synaptic facilitation, and NMDA/AMPA ratios were unchanged, whereas the stimulation of dopamine (DA) D2 receptor by quinpirole reduced the spontaneous and evoked excitatory postsynaptic currents (EPSC). Quinpirole reduced the EPSC amplitude of SPNs in KI but not in KD, KO and WT mice, suggesting that the enhanced LRRK2 kinase activity induced by the G2019S mutation is associated with the observed functional alteration of SPNs synaptic transmission. The effect of quinpirole was mediated by a phospholipase C (PLC)-dependent release of endocannabinoid, with subsequent activation of presynaptic cannabinoid receptor 1 and reduced release of glutamate. The key role of DA D2 receptor in reducing glutamatergic output in our LRRK2 genetic model of PD further supports the use of DA agonists in the treatment of early PD patients with LRRK2 mutations to counteract the disease progression.


Assuntos
Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transtornos Parkinsonianos/tratamento farmacológico , Quimpirol/farmacologia , Quimpirol/uso terapêutico , Receptores de Dopamina D2/agonistas , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
12.
Eur J Neurosci ; 45(4): 499-509, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801959

RESUMO

Electrophysiological recordings were used to investigate the role of the local synthesis of 17ß-estradiol (E2) and 5α-dihydrotestosterone (DHT) on synaptic long-term effects induced in the hippocampal CA1 region of male rat slices. Long-term depression (LTD) and long-term potentiation (LTP), induced by different stimulation patterns, were examined under the block of the DHT synthesis by finasteride (FIN), and the E2 synthesis by letrozole (LET). We used low frequency stimulation (LFS) for LTD, high frequency stimulation (HFS) for LTP, and intermediate patterns differing in duration or frequency. We found that FIN reverted the LFS-LTD into LTP and enhanced LTP induced by intermediate and HFSs. These effects were abolished by exogenous DHT at concentration higher than the basal one, suggesting a stimulus dependent increase in DHT availability. No effect on the synaptic responses was observed giving DHT alone. Moreover, we found that the inhibition of E2 synthesis influenced the HFS-LTP by reducing its amplitude, and the exogenous E2 either enhanced HFS-LTP or reverted the LFS-LTD into LTP. The equivalence of the E2 concentration for rescuing the full HFS-LTP under LET and reverting the LFS-LTD into LTP suggests an enhancement of the endogenous E2 availability that is specifically driven by the HFS. No effect of FIN or LET was observed on the responses to stimuli that did not induce either LTD or LTP. This study provides evidence that the E2 and DHT availability combined with specific stimulation patterns is determinant for the sign and amplitude of the long-term effects.


Assuntos
Estradiol/metabolismo , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Testosterona/análogos & derivados , Inibidores de 5-alfa Redutase/farmacologia , Animais , Inibidores da Aromatase/farmacologia , Estradiol/farmacologia , Finasterida/farmacologia , Hipocampo/fisiologia , Letrozol , Masculino , Nitrilas/farmacologia , Ratos , Ratos Wistar , Potenciais Sinápticos , Testosterona/metabolismo , Testosterona/farmacologia , Triazóis/farmacologia
13.
J Neurosci ; 34(24): 8259-67, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920629

RESUMO

Ischemic stroke is one of the leading causes of morbidity and mortality. Treatment options are limited and only a minority of patients receive acute interventions. Understanding the mechanisms that mediate neuronal injury and death may identify targets for neuroprotective treatments. Here we show that the aberrant activity of the protein kinase Cdk5 is a principal cause of neuronal death in rodents during stroke. Ischemia induced either by embolic middle cerebral artery occlusion (MCAO) in vivo or by oxygen and glucose deprivation in brain slices caused calpain-dependent conversion of the Cdk5-activating cofactor p35 to p25. Inhibition of aberrant Cdk5 during ischemia protected dopamine neurotransmission, maintained field potentials, and blocked excitotoxicity. Furthermore, pharmacological inhibition or conditional knock-out (CKO) of Cdk5 prevented neuronal death in response to ischemia. Moreover, Cdk5 CKO dramatically reduced infarctions following MCAO. Thus, targeting aberrant Cdk5 activity may serve as an effective treatment for stroke.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Animais , Calpaína/farmacologia , Morte Celular/genética , Morte Celular/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Quinase 5 Dependente de Ciclina/genética , Modelos Animais de Doenças , Estrogênios/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipóxia/fisiopatologia , Técnicas In Vitro , Infarto da Artéria Cerebral Média/terapia , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fosfotransferases , Ratos , Ratos Sprague-Dawley , Sais de Tetrazólio , Fatores de Tempo , Ativador de Plasminogênio Tecidual/uso terapêutico
14.
Proc Natl Acad Sci U S A ; 109(46): 18985-90, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23112192

RESUMO

Cortical spreading depression (CSD) is a key pathogenetic step in migraine with aura. Dysfunctions of voltage-dependent and receptor-operated channels have been implicated in the generation of CSD and in the pathophysiology of migraine. Although a known correlation exists between migraine and release of the calcitonin gene-related peptide (CGRP), the possibility that CGRP is involved in CSD has not been examined in detail. We analyzed the pharmacological mechanisms underlying CSD and investigated the possibility that endogenous CGRP contributes to this phenomenon. CSD was analyzed in rat neocortical slices by imaging of the intrinsic optical signal. CSD was measured as the percentage of the maximal surface of a cortical slice covered by the propagation of intrinsic optical signal changes during an induction episode. Reproducible CSD episodes were induced through repetitive elevations of extracellular potassium concentration. AMPA glutamate receptor antagonism did not inhibit CSD, whereas NMDA receptor antagonism did inhibit CSD. Blockade of voltage-dependent sodium channels by TTX also reduced CSD. CSD was also decreased by the antiepileptic drug topiramate, but not by carbamazepine. Interestingly, endogenous CGRP was released in the cortical tissue in a calcium-dependent manner during CSD, and three different CGRP receptor antagonists had a dose-dependent inhibitory effect on CSD, suggesting a critical role of CGRP in this phenomenon. Our findings show that both glutamate NMDA receptors and voltage-dependent sodium channels play roles in CSD. They also demonstrate that CGRP antagonism reduces CSD, supporting the possible use of drugs targeting central CGRP receptors as antimigraine agents.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacocinética , Córtex Cerebral/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Carbamazepina/farmacologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Relação Dose-Resposta a Droga , Frutose/análogos & derivados , Frutose/farmacologia , Masculino , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Transtornos de Enxaqueca/fisiopatologia , Ratos , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Topiramato , Canais de Sódio Disparados por Voltagem
15.
Neurobiol Dis ; 62: 387-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24135008

RESUMO

Multiple sclerosis, one of the main causes of non-traumatic neurological disability in young adults, is an inflammatory and neurodegenerative disorder of the central nervous system. Although the pathogenesis of neuroaxonal damage occurring during the course of the disease is still largely unknown, there is accumulating evidence highlighting the potential role of mitochondria in multiple sclerosis-associated neuronal degeneration. The aim of the present study was to investigate, by utilizing electrophysiological techniques in brain striatal slices, the potential protective effects of interferon-ß1a, one of the most widely used medication for multiple sclerosis, against acute neuronal dysfunction induced by mitochondrial toxins. Interferon-ß1a was found to exert a dose-dependent protective effect against the progressive loss of striatal field potential amplitude induced by the mitochondrial complex I inhibitor rotenone. Interferon-ß1a also reduced the generation of the rotenone-induced inward current in striatal spiny neurons. Conversely, interferon-ß1a did not influence the electrophysiological effects of the mitochondrial complex II inhibitor 3-nitropropionic acid. The protective effect of interferon-ß1a against mitochondrial complex I inhibition was found to be dependent on the activation of STAT1 signaling. Conversely, endogenous dopamine depletion and the modulation of the p38 MAPK and mTOR pathways did not influence the effects of interferon-ß1a. During experimental autoimmune encephalomyelitis (EAE) striatal rotenone toxicity was enhanced but the protective effect of interferon-ß1a was still evident. These results support future studies investigating the role played by specific intracellular signaling pathways in mediating the potential link among inflammation, mitochondrial impairment and neuroaxonal degeneration in multiple sclerosis.


Assuntos
Interferon beta/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Interferon beta-1a , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Neurônios/fisiologia , Ratos , Rotenona/toxicidade , Fator de Transcrição STAT1/metabolismo , Desacopladores/toxicidade
16.
J Neurosci ; 32(46): 16106-19, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152595

RESUMO

In the present study we investigated whether the neuropeptide nociceptin/orphanin FQ (N/OFQ), previously implicated in the pathogenesis of Parkinson's disease, also affects L-DOPA-induced dyskinesia. In striatal slices of naive rodents, N/OFQ (0.1-1 µm) prevented the increase of ERK phosphorylation and the loss of depotentiation of synaptic plasticity induced by the D1 receptor agonist SKF38393 in spiny neurons. In vivo, exogenous N/OFQ (0.03-1 nmol, i.c.v.) or a synthetic N/OFQ receptor agonist given systemically (0.01-1 mg/Kg) attenuated dyskinesias expression in 6-hydroxydopamine hemilesioned rats primed with L-DOPA, without causing primary hypolocomotive effects. Conversely, N/OFQ receptor antagonists worsened dyskinesia expression. In vivo microdialysis revealed that N/OFQ prevented dyskinesias simultaneously with its neurochemical correlates such as the surge of nigral GABA and glutamate, and the reduction of thalamic GABA. Regional microinjections revealed that N/OFQ attenuated dyskinesias more potently and effectively when microinjected in striatum than substantia nigra (SN) reticulata, whereas N/OFQ receptor antagonists were ineffective in striatum but worsened dyskinesias when given in SN. Quantitative autoradiography showed an increase in N/OFQ receptor binding in striatum and a reduction in SN of both unprimed and dyskinetic 6-hydroxydopamine rats, consistent with opposite adaptive changes of N/OFQ transmission. Finally, the N/OFQ receptor synthetic agonist also reduced dyskinesia expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated dyskinetic macaques without affecting the global parkinsonian score. We conclude that N/OFQ receptor agonists may represent a novel strategy to counteract L-DOPA-induced dyskinesias. Their action is possibly mediated by upregulated striatal N/OFQ receptors opposing the D1 receptor-mediated overactivation of the striatonigral direct pathway.


Assuntos
Antidiscinéticos , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/efeitos adversos , Peptídeos Opioides/agonistas , Animais , Autorradiografia , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Microinjeções , Peptídeos Opioides/antagonistas & inibidores , Peptídeos Opioides/genética , Oxidopamina/toxicidade , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo , Nociceptina
17.
J Neurosci ; 32(49): 17921-31, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223310

RESUMO

Dopamine replacement with levodopa (L-DOPA) represents the mainstay of Parkinson's disease (PD) therapy. Nevertheless, this well established therapeutic intervention loses efficacy with the progression of the disease and patients develop invalidating side effects, known in their complex as L-DOPA-induced dyskinesia (LID). Unfortunately, existing therapies fail to prevent LID and very few drugs are available to lessen its severity, thus representing a major clinical problem inPDtreatment. D2-like receptor (D2R) agonists are a powerful clinical option as an alternative to L-DOPA, especially in the early stages of the disease, being associated to a reduced risk of dyskinesia development. D2R agonists also find considerable application in the advanced stages of PD, in conjunction with L-DOPA, which is used in this context at lower dosages, to delay the appearance and the extent of the motor complications. In advanced stages of PD, D2R agonists are often effective in delaying the appearance and the extent of motor complications. Despite the great attention paid to the family of D2R agonists, the main reasons underlying the reduced risk of dyskinesia have not yet been fully characterized. Here we show that the striatal NMDA/AMPAreceptor ratio and theAMPAreceptor subunit composition are altered in experimental parkinsonism in rats. Surprisingly, while L-DOPA fails to restore these critical synaptic alterations, chronic treatment with pramipexole is associated not only with a reduced risk of dyskinesia development but is also able to rebalance, in a dose-dependent fashion, the physiological synaptic parameters, thus providing new insights into the mechanisms of dyskinesia.


Assuntos
Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Benzotiazóis/efeitos adversos , Benzotiazóis/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/complicações , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Levodopa/efeitos adversos , Levodopa/farmacologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Pramipexol , Ratos , Ratos Wistar , Receptores de Dopamina D3/metabolismo
18.
Neurobiol Dis ; 52: 229-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23295855

RESUMO

The central nervous system (CNS) and the immune system are known to be engaged in an intense bidirectional crosstalk. In particular, the immune system has the potential to influence the induction of brain plastic phenomena and neuronal networks functioning. During direct CNS inflammation, as well as during systemic, peripheral, inflammation, the modulation exerted by neuroinflammatory mediators on synaptic plasticity might negatively influence brain neuronal networks functioning. The aim of the present study was to investigate, by using electrophysiological techniques, the ability of hippocampal excitatory synapses to undergo synaptic plasticity during the initial clinical phase of an experimental model of CNS (experimental autoimmune encephalomyelitis, EAE) as well as following a systemic inflammatory trigger. Moreover, we compared the morphologic, synaptic and molecular consequences of central neuroinflammation with those accompanying peripheral inflammation. Hippocampal long-term potentiation (LTP) has been studied by extracellular field potential recordings in the CA1 region. Immunohistochemistry was performed to investigate microglia activation. Western blot and ELISA assays have been performed to assess changes in the subunit composition of the synaptic glutamate NMDA receptor and the concentration of pro-inflammatory cytokines in the hippocampus. Significant microglial activation together with an impairment of CA1 LTP was present in the hippocampus of mice with central as well as peripheral inflammation. Interestingly, exclusively during EAE but not during systemic inflammation, the impairment of hippocampal LTP was paralleled by a selective reduction of the NMDA receptor NR2B subunit levels and a selective increase of interleukin-1ß (IL1ß) levels. Both central and peripheral inflammation-triggered mechanisms can activate CNS microglia and influence the function of CNS synapses. During direct CNS inflammation these events are accompanied by detectable changes in synaptic glutamate receptors subunit composition and in the levels of the pro-inflammatory cytokine IL1ß.


Assuntos
Hipocampo/fisiopatologia , Inflamação/fisiopatologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Animais , Encefalomielite Autoimune Experimental/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Transmissão Sináptica/fisiologia
19.
Brain ; 135(Pt 6): 1884-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561640

RESUMO

Although patients with Parkinson's disease show impairments in cognitive performance even at the early stage of the disease, the synaptic mechanisms underlying cognitive impairment in this pathology are unknown. Hippocampal long-term potentiation represents the major experimental model for the synaptic changes underlying learning and memory and is controlled by endogenous dopamine. We found that hippocampal long-term potentiation is altered in both a neurotoxic and transgenic model of Parkinson's disease and this plastic alteration is associated with an impaired dopaminergic transmission and a decrease of NR2A/NR2B subunit ratio in synaptic N-methyl-d-aspartic acid receptors. Deficits in hippocampal-dependent learning were also found in hemiparkinsonian and mutant animals. Interestingly, the dopamine precursor l-DOPA was able to restore hippocampal synaptic potentiation via D1/D5 receptors and to ameliorate the cognitive deficit in parkinsonian animals suggesting that dopamine-dependent impairment of hippocampal long-term potentiation may contribute to cognitive deficits in patients with Parkinson's disease.


Assuntos
Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Análise de Variância , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Benserazida/farmacologia , Benserazida/uso terapêutico , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdiálise/métodos , Mutação/genética , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Técnicas de Patch-Clamp , Cintilografia , Ratos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Simpatolíticos/toxicidade , Sinaptossomos/diagnóstico por imagem , Sinaptossomos/efeitos dos fármacos , Trítio/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
20.
J Headache Pain ; 14: 62, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23879550

RESUMO

Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²âº. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.


Assuntos
Analgésicos/uso terapêutico , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa