Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 17(1): 71, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525271

RESUMO

BACKGROUND: Marine seaweeds are considered as a rich source of health-promoting compounds by the food and pharmaceutical industry. Hypnea musciformis is a marine red macroalga (seaweed) that is widely distributed throughout the world, including the Mediterranean Sea. It is known to contain various bioactive compounds, including sulfated polysaccharides, flavonoids, and phlorotannins. Recent studies have investigated the potential anticancer effects of extracts from H. musciformis demonstrating their cytotoxic effects on various cancer cell lines. The anticancer effects of these extracts are thought to be due to the presence of bioactive compounds, particularly sulfated polysaccharides, which have been shown to have anticancer and immunomodulatory effects. However, further studies are needed to fully understand the molecular mechanisms that underlie their anticancer effects and to determine their potential as therapeutic agents for cancer treatment. METHODS: H. musciformis was collected from the Aegean Sea (Greece) and used for extract preparation. Transcriptome and proteome analysis was performed in liver and colon cancer human cell lines following treatment with H. musciformis seaweed extracts to characterize its anticancer effect in detail at the molecular level and to link transcriptome and proteome responses to the observed phenotypes in cancer cells. RESULTS: We have identified that treatment with the seaweed extract triggers a p53-mediated response at the transcriptional and protein level in liver cancer cells, in contrast to colon cancer cells in which the effects are more associated with metabolic changes. Furthermore, we show that in treated HepG2 liver cancer cells, p53 interacts with the chromatin of several target genes and facilitates their upregulation possibly through the recruitment of the p300 co-activator. CONCLUSIONS: Overall, the available evidence suggests that extracts from H. musciformis have the potential to serve as a source of anticancer agents in liver cancer cells mainly through activation of a p53-mediated anti-tumor response that is linked to inhibition of cellular proliferation and induction of cell death.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Intestinais , Neoplasias Hepáticas , Alga Marinha , Humanos , Proteoma , Transcriptoma , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Polissacarídeos , Extratos Vegetais/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética
2.
Mar Drugs ; 22(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535471

RESUMO

The aim of the present study was to investigate the use of Posidonia oceanica for making products beneficial for human health. Firstly, we demonstrated that the antioxidant defense (i.e., SOD and APX activity) of P. oceanica's living leaves (LP) has low efficacy, as they partly neutralize the produced H2O2. However, high H2O2 levels led LP to produce, as a response to oxidative stress, high phenolic content, including chicoric acid, p-coumaric acid, caftaric acid, trans-cinnamic and rutin hydrate, as shown by UHPLC-DAD analysis. In addition, LP extracts inhibited intestinal cancer cell proliferation. Moreover, P. oceanica's beach casts consisting of either Wet 'Necromass' (WNP) or Dry 'Necromass' (DNP) were used for preparing extracts. Both DNP and WNP exhibited antioxidant and antiproliferative activities, although lower as compared to those of LP extracts. Although both P. oceanica's meadows and beach casts are considered priority habitats in the Mediterranean Sea due to their high ecological value, legislation framework for beach casts forbidding their removal is still missing. Our results suggested that both LP and DNP could be utilized for the production of high-added value products promoting human health, provided that a sustainability management strategy would be applied for P. oceanica's meadows and beach casts.


Assuntos
Alismatales , Antioxidantes , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Intestinos , Transformação Celular Neoplásica
3.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612526

RESUMO

Cellular senescence is a tightly regulated pathophysiologic process and is caused by replicative exhaustion or external stressors. Since naturally derived bioactive compounds with anti-ageing properties have recently captured scientific interest, we analysed the anti-ageing and antioxidant efficacy of Cryptomphalus aspersa egg extract (CAEE). Its effects on stemness, wound-healing properties, antioxidant defense mechanisms, and DNA damage repair ability of Human Wharton's jelly mesenchymal stem cells (WJ-MSCs) were analysed. Our results revealed that CAEE fortifies WJ-MSCs stemness, which possibly ameliorates their wound-healing ability. Additionally, we show that CAEE possesses a strong antioxidant capacity as demonstrated by the elevation of the levels of the basic antioxidant molecule, GSH, and the induction of the NRF2, a major antioxidant regulator. In addition, CAEE alleviated cells' oxidative stress and therefore prevented stress-induced premature senescence (SIPS). Furthermore, we demonstrated that the prevention of SIPS could be mediated via the extract's ability to induce autophagy, as indicated by the elevation of the protein levels of all basic autophagic molecules and the increase in formation of autophagolysosomes in CAEE-treated WJ-MSCs. Moreover, CAEE-treated cells exhibited decreased Caveolin-1 levels. We propose that Cryptomphalus aspersa egg extract comprises bioactive compounds that can demonstrate strong antioxidant/anti-ageing effects by regulating the Caveolin-1-autophagy-senescence molecular axis.


Assuntos
Antioxidantes , Caveolina 1 , Humanos , Antioxidantes/farmacologia , Senescência Celular , Células-Tronco , Envelhecimento
4.
Eur J Clin Invest ; 53(12): e14065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37497737

RESUMO

BACKGROUND: Gastrointestinal (GI) cancers remain a major threat worldwide, accounting for over 30% of cancer deaths. The identification of novel prognostic biomarkers remains a challenge despite significant advances in the field. The CAV1 gene, encoding the caveolin-1 protein, remains enigmatic in cancer and carcinogenesis, as it has been proposed to act as both a tumour promoter and a tumour suppressor. METHODS: To analyse the differential role of caveolin-1 expression in both tumour cells and stroma in relation to prognosis in GI tumours, we performed a systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines; PROSPERO registration number: CRD42022299148. RESULTS: Our analysis showed that high levels of caveolin-1 in tumour cells were associated with poor prognosis and inferior overall survival (OS) in oesophageal and pancreatic cancer and hepatocellular carcinoma (HCC), but not in gastric and colorectal cancer. Importantly, our study showed that higher stromal caveolin-1 expression was associated with significantly longer OS and disease-free survival in colorectal cancer. Analysis of stromal caveolin-1 expression in the remaining tumours showed a similar trend, although it did not reach statistical significance. CONCLUSIONS: The data suggest that caveolin-1 expression in the tumour cells of oesophageal, pancreatic cancer and HCC and in the stroma of colorectal cancer may be an important novel predictive biomarker for the clinical management of these diseases in a curative setting. However, the main conclusion of our analysis is that caveolin-1 expression should always be assessed separately in stroma and tumour cells.


Assuntos
Caveolina 1 , Neoplasias Gastrointestinais , Biomarcadores Tumorais/genética , Humanos , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/genética , Caveolina 1/genética , Neoplasias Colorretais , Neoplasias Pancreáticas , Neoplasias Esofágicas , Taxa de Sobrevida , Carcinoma Hepatocelular , Neoplasias Hepáticas
5.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834967

RESUMO

Athletes often consume functional beverages in order to improve performance and reduce oxidative stress caused by high-intensity exercise. The present study aimed to evaluate the antioxidant and antibacterial properties of a functional sports beverage formulation. The beverage's antioxidant effects were assessed on human mesenchymal stem cells (MSCs) by determining thiobarbituric acid reactive substances (TBARS; TBARS levels decreased significantly by 52.67% at 2.0 mg/mL), total antioxidant capacity (TAC; TAC levels increased significantly by 80.82% at 2.0 mg/mL) and reduced glutathione (GSH; GSH levels increased significantly by 24.13% at 2.0 mg/mL) levels. Furthermore, the beverage underwent simulated digestion following the INFOGEST protocol to assess its oxidative stability. The analysis of the total phenolic content (TPC) using the Folin-Ciocalteu assay revealed that the beverage contained a TPC of 7.58 ± 0.066 mg GAE/mL, while the phenolics identified by HPLC were catechin (2.149 mg/mL), epicatechin (0.024 mg/mL), protocatechuic acid (0.012 mg/mL), luteolin 7-glucoside (0.001 mg/mL), and kaempferol-3-O-ß-rutinoside (0.001 mg/mL). The beverage's TPC was strongly correlated with TAC (R2 = 896). Moreover, the beverage showcased inhibitory and bacteriostatic effects against Staphylococcus aureus and Pseudomonas aeruginosa. Lastly, the sensory acceptance test demonstrated that the functional sports beverage was well accepted by the assessors.


Assuntos
Antioxidantes , Fenóis , Humanos , Antioxidantes/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Fenóis/análise , Bebidas/análise , Antibacterianos/farmacologia
6.
Medicina (Kaunas) ; 57(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34833421

RESUMO

Background and Objectives: Osteoarthritis (OA) is one of the most common and highly prevalent types of arthritis, also considered a multiphenotypic disease with a strong metabolic component. Ageing is the primary risk factor for OA, while the age-related decline in autophagic activity affects cell function and chondrocyte homeostasis. The aim of this study was to investigate the role of sirtuin 1 (SIRT1) in autophagy dysregulation and lipid metabolism in human OA chondrocytes. Materials and Methods: OA chondrocytes were treated with Resveratrol, Hydroxycloroquine (HCQ) or 3-Methyladenine (3-MA) and HCQ or 3-MA followed by siRNA against SIRT1 (siSIRT1). Then, SIRT1, AcNF-κBp65, LOX-1 and autophagy-related proteins ATG5, ATG13, PI3K class III, Beclin-1, LC3 and ULK protein levels were evaluated using Western blot. Normal articular chondrocytes were treated under serum starvation and/or siSIRT1, and the protein expression levels of the above autophagy-related proteins were evaluated. The staining patterns of LC3/p62 and LOX-1 were analyzed microscopically by immunofluorescence. SIRT1/LC3 complex formation was analyzed by immunoprecipitation. Results: SIRT1 and LOX-1 protein expression were negatively correlated in OA chondrocytes. SIRT1 regulated LOX-1 expression via NF-κΒ deacetylation, while treatment with Resveratrol enhanced SIRT1 enzymatic activity, resulting in LOX-1 downregulation and autophagy induction. In OA chondrocytes, SIRT1 was recognized as an autophagy substrate, formed a complex with LC3 and was consequently subjected to cytoplasmic autophagosome-lysosome degradation. Moreover, siSIRT1-treated normal chondrocytes showed decreased autophagic activity, while double-treated (siSIRT1 and serum starvation) cells showed no induction of autophagy. Conclusions: Our results suggest that SIRT1 regulates lipid homeostasis through LOX-1 expression regulation. Additionally, we indicate that the necessity of SIRT1 for autophagy induction in normal chondrocytes, together with its selective autophagic degradation in OA chondrocytes, could contribute to autophagy dysregulation in OA. We, therefore, suggest a novel regulatory scheme that functionally connects lipid metabolism and autophagy in late-stage OA.


Assuntos
Condrócitos , Sirtuína 1 , Autofagia , Condrócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipídeos , Sirtuína 1/genética , Sirtuína 1/metabolismo
7.
Biochem Biophys Res Commun ; 522(3): 783-791, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31791577

RESUMO

ΜiR-140-5p and miR-146a regulate inflammatory pathways including TLR4/NF-κB signaling and have been found to be involved in OA pathogenesis. In this study, we investigated the effect of the synergistic function of miR-140-5p and miR-146a on inflammation mediated by TLR4 in ΟΑ chondrocytes. Bioinformatics analysis revealed that TLR4 was the only common OA-related target gene of miR-140-5p and miR-146a, located in the sub-network with the highest MCODE score; it also showed that the target genes of miR-140-5p and miR-146a which located in MCODE sub-networks were enriched in OA-related biological processes and pathways. Overexpression of miR-140-5p or miR-146a and combined miR-140-5p/miR-146a overexpression in OA chondrocytes demonstrated that combined treatment had the strongest negative effect on TLR4 expression. Moreover, simultaneous overexpression of miR-140-5p and miR-146a resulted in the highest reduction of NF-κΒ phosphorylation levels, as well as IL-1b, IL-6 and TNFa expression levels in OA chondrocytes as compared to the reductions observed when either miR-140-5p or miR-146a was overexpressed. Our results, therefore, demonstrate for the first time, that the synergistic function of miR-140-5p and miR-146a have a strong protective effect against inflammatory mediators' production in OA chondrocytes through targeting the TLR4/NF-κB signaling.


Assuntos
Citocinas/genética , MicroRNAs/genética , Osteoartrite/genética , Receptor 4 Toll-Like/genética , Idoso , Células Cultivadas , Condrócitos/imunologia , Condrócitos/metabolismo , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Masculino , MicroRNAs/imunologia , Pessoa de Meia-Idade , Osteoartrite/imunologia , Mapas de Interação de Proteínas , Receptor 4 Toll-Like/imunologia , Regulação para Cima
8.
Expert Rev Proteomics ; 16(3): 201-213, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654662

RESUMO

INTRODUCTION: Proteomic analyses have been acknowledged to carry a significant prospective in elucidating the pathogenesis of several diseases, including osteoarthritis (OA). But it has not been an easy road: major technical issues, mainly derived from the complex and rigid nature of the cartilage tissue, had to be faced; an obstacle that led to the development of different approaches. Areas covered: In this review, we categorized the proteomic studies undertaken (proteomic analyses of the cartilage, cartilage explants, cultured chondrocytes, and chondrocytes' secretome) as part of the different strategies developed in order to overcome tissue and disease-specific challenges. Essentially these approaches aimed at identifying differences in the proteome of healthy vs diseased tissue. Our aim was to point out the novel players that have emerged from these analyses and highlight the associated mechanism(s) suggested to play a role in the pathogenesis of OA. Expert commentary: The identified factors indicate the implication of age-associated mechanisms, such as metabolic deregulation, inflammation, and redox imbalance, in OA onset and/or progression. Taken together these results outline the causal network of the disease and place chondrocytes' senescence at the center of the emerging aetiopathological atlas.


Assuntos
Inflamação/genética , Osteoartrite/genética , Proteoma/genética , Proteômica , Senescência Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Inflamação/patologia , Osteoartrite/patologia , Osteoartrite/terapia , Oxirredução
9.
Proc Natl Acad Sci U S A ; 112(15): 4803-8, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825751

RESUMO

Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia.


Assuntos
Encefalopatias/genética , Encéfalo/anormalidades , Proteínas de Ligação a DNA/genética , Mutação , Fatores de Transcrição/genética , Acetilação , Animais , Animais Recém-Nascidos , Western Blotting , Encefalopatias/mortalidade , Encefalopatias/fisiopatologia , Fissura Palatina/embriologia , Fissura Palatina/genética , Anormalidades Craniofaciais/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sobrevida , Taxa de Sobrevida , Fatores de Tempo , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo
10.
Cytotherapy ; 19(7): 808-820, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28454681

RESUMO

BACKGROUND: Human mesenchymal stem cells (MSC) are important tools for several cell-based therapies. However, their use in such therapies requires in vitro expansion during which MSCs quickly reach replicative senescence. Replicative senescence has been linked to macromolecular damage, and especially oxidative stress-induced DNA damage. Recent studies on the other hand, have implicated telomerase in the cellular response to oxidative damage, suggesting that telomerase has a telomere-length independent function that promotes survival. METHODS: Here, we studied the DNA damage accumulation and repair during in vitro expansion as well as after acute external oxidative exposure of control MSCs and MSCs that overexpress the catalytic subunit of telomerase (hTERT MSCs). RESULTS: We showed that hTERT MSCs at high passages have a significant lower percentage of DNA lesions as compared to control cells of the same passages. Additionally, less damage was accumulated due to external oxidative insult in the nuclei of hTERT overexpressing cells as compared to the control cells. Moreover, we demonstrated that oxidative stress leads to diverse nucleus malformations, such as multillobular nuclei or donut-shaped nuclei, in the control cells whereas hTERT MSCs showed significant resistance to the formation of such defects. Finally, hTERT MSCs were found to possess higher activities of the basic antioxidant enzymes, superoxide dismutase and catalase, than control MSCs. DISCUSSION: On the basis of these results, we propose that hTERT enhancement confers resistance to genomic damage due to the amelioration of the cell's basic antioxidant machinery.


Assuntos
Antioxidantes/metabolismo , Dano ao DNA , Células-Tronco Mesenquimais/fisiologia , Estresse Oxidativo , Telomerase/metabolismo , Catalase/metabolismo , Células Cultivadas , Senescência Celular/fisiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Subunidades Proteicas , Superóxido Dismutase/metabolismo , Telomerase/genética , Telômero , Homeostase do Telômero
12.
Proc Natl Acad Sci U S A ; 107(9): 4159-64, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142474

RESUMO

Most carcinomas present some form of chromosome instability in combination with spindle defects. Numerical instability is likely caused by spindle aberrations, but the origin of breaks and translocations remains elusive. To determine whether one mechanism can bring about both types of instability, we studied the relationship between DNA damage and spindle defects. Although lacking apparent repair defects, primary Dido mutant cells formed micronuclei containing damaged DNA. The presence of centromeres showed that micronuclei were caused by spindle defects, and cell cycle markers showed that DNA damage was generated during mitosis. Although the micronuclei themselves persisted, the DNA damage within was repaired during S and G2 phases. DNA breaks in Dido mutant cells regularly colocalized with centromeres, which were occasionally distorted. Comparable defects were found in APC mutant cell lines, an independent system for spindle defects. On the basis of these results, we propose a model for break formation in which spindle defects lead to centromere shearing.


Assuntos
Centrômero , Dano ao DNA , Fuso Acromático , Animais , Células Cultivadas , Reparo do DNA , Histonas/metabolismo , Camundongos , Mutação , Fosforilação
13.
Redox Biol ; 62: 102701, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094517

RESUMO

We and others have reported that senescence onset is accompanied by genomic instability that is evident by several defects, such as aneuploidy or erroneous mitosis features. Here, we report that these defects also appear in young cells upon oxidative insult. We provide evidence that these errors could be the consequence of oxidative stress (OS)- either exogenous or senescence-associated - overriding the spindle assembly checkpoint (SAC). Young cells treated with Η2Ο2 as well as older cells fail to maintain mitotic arrest in the presence of spindle poisons and a significant higher percentage of them have supernumerary centrosomes and centrosome related anomalous characteristics. We also report that aging is escorted by expression modifications of SAC components, and especially of Bub1b/BubR1. Bub1b/BubR1 has been previously reported to decrease naturally upon aging. Here, we show that there is an initial increase in Bub1b/BubR1 levels, feasibly as part of the cells' response against OS-driven genomic instability, that is followed by its autophagy dependent degradation. This provides an explanation that was missing regarding the molecular entity responsible for the downregulation of Bub1b/BubR1 upon aging, especially since it is well established, by us and others, that the proteasome function decays as cells age. These results, not only serve the previously reported notion of a shift from proteasome to autophagy-dependent degradation upon aging, but also provide a mechanistic insight for mitotic errors-driven senescence. We believe that our conclusions deepen our understanding regarding the homeostatic function of autophagy that serves the establishment of senescence as a barrier against cellular transformation.


Assuntos
Autofagia , Mitose , Animais , Camundongos , Células Cultivadas , Instabilidade Genômica , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
Cells ; 12(13)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37443790

RESUMO

Although MSCs grant pronounced potential for cell therapies, several factors, such as their heterogeneity restrict their use. To overcome these limitations, iMSCs (MSCs derived from induced pluripotent stem cells (iPSCs) have attracted attention. Here, we analyzed the transcriptome of MSCs, iPSCs and iMSCs derived from healthy individuals and osteoarthritis (OA) patients and explored miRNA-mRNA interactions during these transitions. We performed RNA-seq and gene expression comparisons and Protein-Protein-Interaction analysis followed by GO enrichment and KEGG pathway analyses. MicroRNAs' (miRNA) expression profile using miRarrays and differentially expressed miRNA's impact on regulating iMSCs gene expression was also explored. Our analyses revealed that iMSCs derivation from iPSCs favors the expression of genes conferring high proliferation, differentiation, and migration properties, all of which contribute to a rejuvenated state of iMSCs compared to primary MSCs. Additionally, our exploration of the involvement of miRNAs in this rejuvenated iMSCs transcriptome concluded in twenty-six miRNAs that, as our analysis showed, are implicated in pluripotency. Notably, the identified here interactions between hsa-let7b/i, hsa-miR-221/222-3p, hsa-miR-302c, hsa-miR-181a, hsa-miR-331 with target genes HMGA2, IGF2BP3, STARD4, and APOL6 could prove to be the necessary tools that will convey iMSCs into the ideal mean for cell therapy in osteoarthritis.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Transcriptoma/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Osteoartrite/genética , Osteoartrite/terapia
15.
R Soc Open Sci ; 10(7): 230206, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38107166

RESUMO

Replacing traditional journals with a more modern solution is not a new idea. Here, we propose ways to overcome the social dilemma underlying the decades of inaction. Any solution needs to not only resolve the current problems but also be capable of preventing takeover by corporations: it needs to replace traditional journals with a decentralized, resilient, evolvable network that is interconnected by open standards and open-source norms under the governance of the scholarly community. It needs to replace the monopolies connected to journals with a genuine, functioning and well-regulated market. In this new market, substitutable service providers compete and innovate according to the conditions of the scholarly community, avoiding sustained vendor lock-in. Therefore, a standards body needs to form under the governance of the scholarly community to allow the development of open scholarly infrastructures servicing the entire research workflow. We propose a redirection of money from legacy publishers to the new network by funding bodies broadening their minimal infrastructure requirements at recipient institutions to include modern infrastructure components replacing and complementing journal functionalities. Such updated eligibility criteria by funding agencies would help realign the financial incentives for recipient institutions with public and scholarly interest.

16.
Foods ; 12(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36981236

RESUMO

Macroalgae exhibit beneficial bioactivities for human health. Thus, the aim of the present study was to examine the antioxidant and anticancer potential of 14 macroalgae species' extracts, namely, Gigartina pistillata, Gigartina teedei, Gracilaria gracilis, Gracilaria sp., Gracilaria bursa pastoris, Colpomenia sinuosa, Cystoseira amentacea, Cystoseira barbata, Cystoseira compressa, Sargassum vulgare, Padina pavonica, Codium fragile, Ulva intestinalis, and Ulva rigida, from the Aegean Sea, Greece. The antioxidant activity was assessed using DPPH, ABTS•+, •OH, and O2•- radicals' scavenging assays, reducing power (RP), and protection from ROO•-induced DNA plasmid damage assays. Moreover, macroalgae extracts' total polyphenol contents (TPCs) were assessed. Extracts' inhibition against liver HepG2 cancer cell growth was assessed using the XTT assay. The results showed that G. teedei extract's IC50 was the lowest in DPPH (0.31 ± 0.006 mg/mL), ABTS•+ (0.02 ± 0.001 mg/mL), •OH (0.10 ± 0.007 mg/mL), O2•- (0.05 ± 0.003 mg/mL), and DNA plasmid breakage (0.038 ± 0.002 mg/mL) and exhibited the highest RP (RP0.5AU 0.24 ± 0.019 mg/mL) and TPC (12.53 ± 0.88 mg GAE/g dw). There was also a significant correlation between antioxidant activity and TPC. P. pavonica (IC50 0.93 ± 0.006 mg/mL) exhibited the highest inhibition against HepG2 cell growth. Conclusively, some of the tested extracts exhibited significant chemopreventive properties, and so they may be used for food products.

17.
IUBMB Life ; 64(5): 432-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22473755

RESUMO

The DNA damage response (DDR) orchestrates the recruitment of repair proteins at sites of damage and arrests cell-cycle progression until completion of repair. Upon irreparable damage, DNA damage foci persist (long-lived foci) and this is believed to induce cellular senescence. The resolution of DNA damage foci has previously been shown to depend on proteasomal degradation and various proteasome subunits have been implicated in the DDR. In this study, we aimed to analyze the possible distinct roles of individual proteasome subunits in the DDR. We show that specific 19S subunits respond to DNA damage by increased protein levels and nuclear translocation. Importantly, two 19S subunits, Rpn7 and Rpn11, colocalize with DNA damage foci over their whole lifespan. Although silencing of Rpn11 does not affect foci stability and lifespan, silencing of Rpn7 promotes faster resolution of DNA damage foci following genotoxic insult. For the first time, we provide evidence that Rpn7 silencing specifically decreases the frequencies of long-lived DNA damage foci without, however, affecting the repair rate of short-lived foci. Therefore, we propose that interaction of Rpn7 with DDR foci in situ mediates the protection of DNA damage foci from premature resolution. We suggest that this interaction is involved in enabling cellular senescence following genotoxic insult.


Assuntos
Dano ao DNA , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Senescência Celular , Inibidores de Cisteína Proteinase/farmacologia , Reparo do DNA , Etoposídeo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio , Leupeptinas/farmacologia , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/genética , Transporte Proteico , Interferência de RNA , Regulação para Cima
18.
Antioxidants (Basel) ; 11(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35453471

RESUMO

Natural bromophenols are important secondary metabolites in marine algae. Derivatives of these bromophenol are potential candidates for the drug development due to their biological activities, such as antioxidant, anticancer, anti-diabetic and anti-inflammatory activity. In our present study, we have designed and synthesized a series of new methylated and acetylated bromophenol derivatives from easily available materials using simple operation procedures and evaluated their antioxidant and anticancer activities on the cellular level. The results showed that 2.,3-dibromo-1-(((2-bromo-4,5-dimethoxybenzyl)oxy)methyl)-4,5-dimethoxybenzene (3b-9) and (oxybis(methylene))bis(4-bromo-6-methoxy-3,1-phenylene) diacetate (4b-3) compounds ameliorated H2O2-induced oxidative damage and ROS generation in HaCaT keratinocytes. Compounds 2.,3-dibromo-1-(((2-bromo-4,5-dimethoxybenzyl)oxy)methyl)-4,5-dimethoxybenzene (3b-9) and (oxybis(methylene) )bis(4-bromo-6-methoxy-3,1-phenylene) diacetate (4b-3) also increased the TrxR1 and HO-1 expression while not affecting Nrf2 expression in HaCaT. In addition, compounds (oxybis(methylene)bis(2-bromo-6-methoxy-4,1-phenylene) diacetate (4b-4) inhibited the viability and induced apoptosis of leukemia K562 cells while not affecting the cell cycle distribution. The present work indicated that some of these bromophenol derivatives possess significant antioxidant and anticancer potential, which merits further investigation.

19.
Mech Ageing Dev ; 208: 111730, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087742

RESUMO

Leptin and ROS are implicated in the regulation of inflammatory pathways including NLRP3-inflammasome. We investigated the functional link between leptin, ROS and NLRP3-inflammasome formation/activation in osteoarthritis (OA), an age-related disease. We found that inflammasome components' (NLRP3, ASC, Caspase-1 and cleaved Caspase-1) protein expression were increased in OA cartilage biopsies and chondrocytes compared to healthy cartilage and chondrocytes. Immunofluorescence showed increased co-localization of NLRP3/ASC and NLRP3/Caspase-1, ASC-specks formation and ROS levels in OA compared to normal chondrocytes. NOX4 mRNA expression and IL-1ß/IL-18 secretion levels were also elevated in OA chondrocytes. Furthermore, NLRP3-siRNA in OA chondrocytes revealed significant MMP-9/MMP-13 downregulation. To elucidate leptin/ROS/NLRP3-inflammasome interactions, OA chondrocytes were treated with ROS-inhibitor NAC, NOXs-inhibitor DPI, NOX4-inhibitor GLX351322 and leptin-siRNA, while normal chondrocytes were incubated with leptin with or without DPI or GLX351322. We observed attenuated ROS levels and NLRP3-inflammasome formation/activation in NAC-, DPI- or GLX351322-treated OA chondrocytes, while the same effect was shown after transfection with leptin-siRNA. Furthermore, incubation of normal chondrocytes with leptin enhanced ROS production and inflammasome formation/activation, while pretreatment with DPI or GLX351322 abolished leptin's stimulatory effects confirming leptin-NOX4-ROS-inflammasome regulatory axis. Overall, our findings provide novel evidence indicating that leptin-induced NLRP3-inflammasome formation/activation in OA chondrocytes is mediated by NOX4-dependent ROS production.


Assuntos
Condrócitos , Osteoartrite , Humanos , Condrócitos/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Leptina/farmacologia , Leptina/metabolismo , RNA Interferente Pequeno/genética , Interleucina-1beta/metabolismo , Caspase 1/metabolismo , Caspase 1/farmacologia , Osteoartrite/metabolismo
20.
World J Stem Cells ; 13(9): 1177-1196, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34630857

RESUMO

At the core of regenerative medicine lies the expectation of repair or replacement of damaged tissues or whole organs. Donor scarcity and transplant rejection are major obstacles, and exactly the obstacles that stem cell-based therapy promises to overcome. These therapies demand a comprehensive understanding of the asymmetric division of stem cells, i.e. their ability to produce cells with identical potency or differentiated cells. It is believed that with better understanding, researchers will be able to direct stem cell differentiation. Here, we describe extraordinary advances in manipulating stem cell fate that show that we need to focus on the centrosome and the centrosome-derived primary cilium. This belief comes from the fact that this organelle is the vehicle that coordinates the asymmetric division of stem cells. This is supported by studies that report the significant role of the centrosome/cilium in orchestrating signaling pathways that dictate stem cell fate. We anticipate that there is sufficient evidence to place this organelle at the center of efforts that will shape the future of regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa