Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 20(6): 883-891, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33479528

RESUMO

Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced by walking motors can break dimer interactions and trigger microtubule disassembly. We tested this hypothesis by studying the interplay between microtubules and moving molecular motors in vitro. Our results show that molecular motors can remove tubulin dimers from the lattice and rapidly destroy microtubules. We also found that dimer removal by motors was compensated for by the insertion of free tubulin dimers into the microtubule lattice. This self-repair mechanism allows microtubules to survive the damage induced by molecular motors as they move along their tracks. Our study reveals the existence of coupling between the motion of molecular motors and the renewal of the microtubule lattice.


Assuntos
Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Movimento , Modelos Biológicos
2.
C R Biol ; 344(3): 297-310, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35786632

RESUMO

Microtubules are dynamic polymers, permanently assembling and disassembling, that serve as tracks for intra-cellular transport by molecular motors. We recently found that the low energy of tubulin dimer interactions allows for spontaneous loss of tubulin dimers from the microtubule lattice [1]. This raised the possibility that the mechanical work produced by molecular motors as they move on microtubules can break dimer interactions and trigger microtubule disassembly. In a recent study, we tested this hypothesis by studying the interplay between microtubules and moving molecular motors in vitro [2]. Our results show that molecular motors can remove tubulin dimers from the lattice and rapidly destroy microtubules. We also found that dimer removal by motors was compensated by the insertion of free tubulin dimers into the microtubule lattice. This self-repair mechanism allows microtubules to survive the damage induced by molecular motors as they move along their tracks. Our study reveals the existence of coupling between the motion of molecular motors and the renewal of the microtubule lattice.


Les microtubules sont des polymères dynamiques, s'assemblant et se désassemblant en permanence, qui servent de pistes pour le transport intracellulaire par des moteurs moléculaires. Nous avons récemment découvert que la faible énergie des interactions entre les dimères de tubuline permet la perte spontanée des dimères de tubuline le long d'un microtubule [1]. Le travail mécanique produit par les moteurs moléculaires lorsqu'ils se déplacent sur les microtubules pourrait donc rompre ces faibles interactions entre dimères et déclencher le désassemblage des microtubules. Dans une étude récente, nous avons testé cette hypothèse en étudiant l'interaction entre les microtubules et les moteurs moléculaires en mouvement in vitro [2]. Nos résultats montrent que les moteurs moléculaires peuvent retirer les dimères de tubuline du réseau et détruire rapidement les microtubules. Nous avons également constaté que l'élimination des dimères par les moteurs était compensée par l'insertion de dimères de tubuline libres dans le réseau de microtubules. Ce mécanisme d'autoréparation permet aux microtubules de survivre aux dommages induits par les moteurs moléculaires lors de leurs déplacements. Notre étude révèle donc l'existence d'un couplage entre le mouvement des moteurs moléculaires et le renouvellement du réseau de microtubules.


Assuntos
Microtúbulos , Tubulina (Proteína)
3.
Nat Phys ; 15(8): 830-838, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31867047

RESUMO

Microtubules are dynamic polymers, which grow and shrink by addition and removal of tubulin dimers at their extremities. Within the microtubule shaft, dimers adopt a densely packed and highly ordered crystal-like lattice structure, which is generally not considered to be dynamic. Here we report that thermal forces are sufficient to remodel the microtubule shaft, despite its apparent stability. Our combined experimental data and numerical simulations on lattice dynamics and structure suggest that dimers can spontaneously leave and be incorporated into the lattice at structural defects. We propose a model mechanism, where the lattice dynamics is initiated via a passive breathing mechanism at dislocations, which are frequent in rapidly growing microtubules. These results show that we may need to extend the concept of dissipative dynamics, previously established for microtubule extremities, to the entire shaft, instead of considering it as a passive material.

4.
Sci Rep ; 8(1): 8785, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884887

RESUMO

Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.


Assuntos
Divisão Celular , Núcleo Celular/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Esferoides Celulares/citologia , Proliferação de Células , Células HCT116 , Humanos , Esferoides Celulares/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa