Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Annu Rev Immunol ; 38: 147-170, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340573

RESUMO

Metabolism is one of the strongest drivers of interkingdom interactions-including those between microorganisms and their multicellular hosts. Traditionally thought to fuel energy requirements and provide building blocks for biosynthetic pathways, metabolism is now appreciated for its role in providing metabolites, small-molecule intermediates generated from metabolic processes, to perform various regulatory functions to mediate symbiotic relationships between microbes and their hosts. Here, we review recent advances in our mechanistic understanding of how microbiota-derived metabolites orchestrate and support physiological responses in the host, including immunity, inflammation, defense against infections, and metabolism. Understanding how microbes metabolically communicate with their hosts will provide us an opportunity to better describe how a host interacts with all microbes-beneficial, pathogenic, and commensal-and an opportunity to discover new ways to treat microbial-driven diseases.


Assuntos
Suscetibilidade a Doenças , Metabolismo Energético , Homeostase , Microbiota , Simbiose , Animais , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Microbiota/imunologia
2.
Immunity ; 51(4): 625-637.e3, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31564469

RESUMO

Preventing aberrant immune responses against the microbiota is essential for the health of the host. Microbiota-shed pathogen-associated molecular patterns translocate from the gut lumen into systemic circulation. Here, we examined the role of hemolymph (insect blood) filtration in regulating systemic responses to microbiota-derived peptidoglycan. Drosophila deficient for the transcription factor Klf15 (Klf15NN) are viable but lack nephrocytes-cells structurally and functionally homologous to the glomerular podocytes of the kidney. We found that Klf15NN flies were more resistant to infection than wild-type (WT) counterparts but exhibited a shortened lifespan. This was associated with constitutive Toll pathway activation triggered by excess peptidoglycan circulating in Klf15NN flies. In WT flies, peptidoglycan was removed from systemic circulation by nephrocytes through endocytosis and subsequent lysosomal degradation. Thus, renal filtration of microbiota-derived peptidoglycan maintains immune homeostasis in Drosophila, a function likely conserved in mammals and potentially relevant to the chronic immune activation seen in settings of impaired blood filtration.


Assuntos
Infecções Bacterianas/imunologia , Tecido Conjuntivo/fisiologia , Drosophila/fisiologia , Glomérulos Renais/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Podócitos/fisiologia , Animais , Animais Geneticamente Modificados , Secreções Corporais , Proteínas de Drosophila/metabolismo , Endocitose , Homeostase , Imunidade Inata , Mamíferos , Microbiota , Receptores Toll-Like/metabolismo
3.
Trends Immunol ; 41(2): 113-125, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959515

RESUMO

Metabolic processes occurring during host-microbiota-pathogen interactions can favorably or negatively influence host survival during infection. Defining the metabolic needs of the three players, the mechanisms through which they acquire nutrients, and whether each participant cooperates or competes with each other to meet their own metabolic demands during infection has the potential to reveal new approaches to treat disease. Here, we review topical findings in organismal metabolism and infection and highlight four emerging lines of investigation: how host-microbiota metabolic partnerships protect against infection; competition for glucose between host and pathogen; significance of infection-induced anorexia; and redefinition of the role of iron during infection. We also discuss how these discoveries shape our understanding of infection biology and their likely therapeutic value.


Assuntos
Adaptação Fisiológica , Interações Hospedeiro-Patógeno , Infecções , Microbiota , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Infecções/microbiologia , Infecções/fisiopatologia , Microbiota/fisiologia
4.
Infect Immun ; 90(9): e0024222, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35924898

RESUMO

To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.


Assuntos
Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Interações Hospedeiro-Patógeno , Humanos , Leptina/metabolismo , Lipídeos , Yersinia pseudotuberculosis/metabolismo
5.
PLoS Pathog ; 14(2): e1006847, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394281

RESUMO

Host responses to infection encompass many processes in addition to activation of the immune system, including metabolic adaptations, stress responses, tissue repair, and other reactions. The response to bacterial infection in Drosophila melanogaster has been classically described in studies that focused on the immune response elicited by a small set of largely avirulent microbes. Thus, we have surprisingly limited knowledge of responses to infection that are outside the canonical immune response, of how the response to pathogenic infection differs from that to avirulent bacteria, or even of how generic the response to various microbes is and what regulates that core response. In this study, we addressed these questions by profiling the D. melanogaster transcriptomic response to 10 bacteria that span the spectrum of virulence. We found that each bacterium triggers a unique transcriptional response, with distinct genes making up to one third of the response elicited by highly virulent bacteria. We also identified a core set of 252 genes that are differentially expressed in response to the majority of bacteria tested. Among these, we determined that the transcription factor CrebA is a novel regulator of infection tolerance. Knock-down of CrebA significantly increased mortality from microbial infection without any concomitant change in bacterial number. Upon infection, CrebA is upregulated by both the Toll and Imd pathways in the fat body, where it is required to induce the expression of secretory pathway genes. Loss of CrebA during infection triggered endoplasmic reticulum (ER) stress and activated the unfolded protein response (UPR), which contributed to infection-induced mortality. Altogether, our study reveals essential features of the response to bacterial infection and elucidates the function of a novel regulator of infection tolerance.


Assuntos
Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Imunidade Inata , Imunidade Adaptativa , Animais , Animais Geneticamente Modificados , Carga Bacteriana , Vacinas Bacterianas/administração & dosagem , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/antagonistas & inibidores , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Estresse do Retículo Endoplasmático , Corpo Adiposo/imunologia , Corpo Adiposo/metabolismo , Corpo Adiposo/microbiologia , Corpo Adiposo/patologia , Perfilação da Expressão Gênica , Biblioteca Gênica , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas/patogenicidade , Bactérias Gram-Positivas/fisiologia , Masculino , Interferência de RNA , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Virulência
6.
PLoS Pathog ; 12(10): e1005961, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27780230

RESUMO

Phagocytosis is an ancient mechanism central to both tissue homeostasis and immune defense. Both the identity of the receptors that mediate bacterial phagocytosis and the nature of the interactions between phagocytosis and other defense mechanisms remain elusive. Here, we report that Croquemort (Crq), a Drosophila member of the CD36 family of scavenger receptors, is required for microbial phagocytosis and efficient bacterial clearance. Flies mutant for crq are susceptible to environmental microbes during development and succumb to a variety of microbial infections as adults. Crq acts parallel to the Toll and Imd pathways to eliminate bacteria via phagocytosis. crq mutant flies exhibit enhanced and prolonged immune and cytokine induction accompanied by premature gut dysplasia and decreased lifespan. The chronic state of immune activation in crq mutant flies is further regulated by negative regulators of the Imd pathway. Altogether, our data demonstrate that Crq plays a key role in maintaining immune and organismal homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Homeostase , Sistema Imunitário/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Fagocitose/fisiologia , Receptores Depuradores/metabolismo , Envelhecimento , Animais , Proteínas de Drosophila/imunologia , Drosophila melanogaster , Reação em Cadeia da Polimerase , Receptores Depuradores/imunologia
7.
Nature ; 478(7370): 515-8, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21947006

RESUMO

The innate immune system detects infection by using germline-encoded receptors that are specific for conserved microbial molecules. The recognition of microbial ligands leads to the production of cytokines, such as type I interferons (IFNs), that are essential for successful pathogen elimination. Cytosolic detection of pathogen-derived DNA is one major mechanism of inducing IFN production, and this process requires signalling through TANK binding kinase 1 (TBK1) and its downstream transcription factor, IFN-regulatory factor 3 (IRF3). In addition, a transmembrane protein called STING (stimulator of IFN genes; also known as MITA, ERIS, MPYS and TMEM173) functions as an essential signalling adaptor, linking the cytosolic detection of DNA to the TBK1-IRF3 signalling axis. Recently, unique nucleic acids called cyclic dinucleotides, which function as conserved signalling molecules in bacteria, have also been shown to induce a STING-dependent type I IFN response. However, a mammalian sensor of cyclic dinucleotides has not been identified. Here we report evidence that STING itself is an innate immune sensor of cyclic dinucleotides. We demonstrate that STING binds directly to radiolabelled cyclic diguanylate monophosphate (c-di-GMP), and we show that unlabelled cyclic dinucleotides, but not other nucleotides or nucleic acids, compete with c-di-GMP for binding to STING. Furthermore, we identify mutations in STING that selectively affect the response to cyclic dinucleotides without affecting the response to DNA. Thus, STING seems to function as a direct sensor of cyclic dinucleotides, in addition to its established role as a signalling adaptor in the IFN response to cytosolic DNA. Cyclic dinucleotides have shown promise as novel vaccine adjuvants and immunotherapeutics, and our results provide insight into the mechanism by which cyclic dinucleotides are sensed by the innate immune system.


Assuntos
GMP Cíclico/análogos & derivados , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Adjuvantes Imunológicos , Sequência de Aminoácidos , Animais , GMP Cíclico/imunologia , DNA/imunologia , Células HEK293 , Humanos , Interferons/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular
8.
Curr Opin Microbiol ; 65: 123-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847524

RESUMO

During their co-evolution with pathogens, hosts acquired defensive health strategies that allow them to maintain their health or promote recovery when challenged with infections. The cooperative defense system is a largely unexplored branch of these evolved defense strategies. Cooperative defenses limit physiological damage and promote health without having a negative impact on a pathogen's ability to survive and replicate within the host. Here, we review recent discoveries in the new field of cooperative defenses using the model pathogens Citrobacter rodentium and Salmonella enterica. We discuss not only host-encoded but also pathogen-encoded mechanisms of cooperative defenses. Cooperative defenses remain an untapped resource in clinical medicine. With a global pandemic exacerbated by a lack of vaccine access and a worldwide rise in antibiotic resistance, the study of cooperative defenses offers an opportunity to safeguard health in the face of pathogenic infection.


Assuntos
Infecções por Enterobacteriaceae , Salmonella enterica , Citrobacter rodentium , Infecções por Enterobacteriaceae/patologia , Promoção da Saúde , Interações Hospedeiro-Patógeno , Humanos
9.
Infect Immun ; 79(2): 688-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21098106

RESUMO

Type I interferons (IFNs) are central regulators of the innate and adaptive immune responses to viral and bacterial infections. Type I IFNs are induced upon cytosolic detection of microbial nucleic acids, including DNA, RNA, and the bacterial second messenger cyclic-di-GMP (c-di-GMP). In addition, a recent study demonstrated that the intracellular bacterial pathogen Listeria monocytogenes stimulates a type I IFN response due to cytosolic detection of bacterially secreted c-di-AMP. The transmembrane signaling adaptor Sting (Tmem173, Mita, Mpys, Eris) has recently been implicated in the induction of type I IFNs in response to cytosolic DNA and/or RNA. However, the role of Sting in response to purified cyclic dinucleotides or during in vivo L. monocytogenes infection has not been addressed. In order to identify genes important in the innate immune response, we have been conducting a forward genetic mutagenesis screen in C57BL/6 mice using the mutagen N-ethyl-N-nitrosourea (ENU). Here we describe a novel mutant mouse strain, Goldenticket (Gt), that fails to produce type I IFNs upon L. monocytogenes infection. By genetic mapping and complementation experiments, we found that Gt mice harbor a single nucleotide variant (T596A) of Sting that functions as a null allele and fails to produce detectable protein. Analysis of macrophages isolated from Gt mice revealed that Sting is absolutely required for the type I interferon response to both c-di-GMP and c-di-AMP. Additionally, Sting is required for the response to c-di-GMP and L. monocytogenes in vivo. Our results provide new functions for Sting in the innate interferon response to pathogens.


Assuntos
GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/metabolismo , Interferon Tipo I/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Proteínas de Membrana/fisiologia , Alelos , Animais , Linhagem Celular , GMP Cíclico/metabolismo , Etilnitrosoureia/toxicidade , Feminino , Regulação da Expressão Gênica/fisiologia , Teste de Complementação Genética , Humanos , Interferon Tipo I/genética , Listeriose/metabolismo , Macrófagos/microbiologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Mutação , Polimorfismo de Nucleotídeo Único
10.
Wiley Interdiscip Rev Dev Biol ; 8(5): e344, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30993906

RESUMO

From flies to humans, many components of the innate immune system have been conserved during metazoan evolution. This foundational observation has allowed us to develop Drosophila melanogaster, the fruit fly, into a powerful model to study innate immunity in animals. Thanks to an ever-growing arsenal of genetic tools, an easily manipulated genome, and its winning disposition, Drosophila is now employed to study not only basic molecular mechanisms of pathogen recognition and immune signaling, but also the nature of physiological responses activated in the host by microbial challenge and how dysregulation of these processes contributes to disease. Here, we present a collection of methods and protocols to challenge the fly with an assortment of microbes, both systemically and orally, and assess its humoral, cellular, and epithelial response to infection. Our review covers techniques for measuring the reaction to microbial infection both qualitatively and quantitatively. Specifically, we describe survival, bacterial load, BLUD (a measure of disease tolerance), phagocytosis, melanization, clotting, and ROS production assays, as well as efficient protocols to collect hemolymph and measure immune gene expression. We also offer an updated catalog of online resources and a collection of popular reporter lines and mutants to facilitate research efforts. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/complicações , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Imunidade Inata/imunologia , Fagocitose , Animais , Bactérias/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa