Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 150(5): 877-9, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22939616

RESUMO

Cytoplasmic dynein is a motor essential for numerous mechanical processes in eukaryotic cells. How its activity is regulated is largely unknown. By using a combination of approaches including single-molecule biophysics and electron microscopy, Huang et al. in this issue uncover the regulatory mechanism by which LIS1 controls the activity of cytoplasmic dynein.

2.
J Biol Chem ; 299(6): 104740, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088134

RESUMO

Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signaling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. While inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterized a pair of nanobodies that are specific for mouse Plexin-B1 and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signaling and provides a potential innovative route for therapeutic modulation of Plexin-B1.


Assuntos
Moléculas de Adesão Celular , Semaforinas , Anticorpos de Domínio Único , Animais , Camundongos , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Moléculas de Adesão Celular/metabolismo
3.
EMBO J ; 36(22): 3387-3404, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29038173

RESUMO

Cytoplasmic dynein is involved in a multitude of essential cellular functions. Dynein's activity is controlled by the combinatorial action of several regulatory proteins. The molecular mechanism of this regulation is still poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either tracking dynamic microtubule plus-ends in an EB-dependent manner or moving processively towards minus ends in an adaptor protein-dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators, either the adaptor protein Bicaudal-D2 (BicD2) or the multifunctional regulator Lissencephaly-1 (Lis1). BicD2 and Lis1 together control the overall efficiency of motility initiation. Remarkably, dynactin can bias motility initiation locally from microtubule plus ends by autonomous plus-end recognition. This bias is further enhanced by EBs and Lis1. Our study provides insight into the mechanism of dynein regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.


Assuntos
Movimento Celular , Dineínas/metabolismo , Microtúbulos/metabolismo , Animais , Complexo Dinactina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Probabilidade , Sus scrofa
4.
EMBO J ; 36(20): 3080-3095, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28923826

RESUMO

Type IV secretion (T4S) systems are versatile bacterial secretion systems mediating transport of protein and/or DNA T4S systems are generally composed of 11 VirB proteins and 1 VirD protein (VirD4). The VirB1-11 proteins assemble to form a secretion machinery and a pilus while the VirD4 protein is responsible for substrate recruitment. The structure of VirD4 in isolation is known; however, its structure bound to the VirB1-11 apparatus has not been determined. Here, we purify a T4S system with VirD4 bound, define the biochemical requirements for complex formation and describe the protein-protein interaction network in which VirD4 is involved. We also solve the structure of this complex by negative stain electron microscopy, demonstrating that two copies of VirD4 dimers locate on both sides of the apparatus, in between the VirB4 ATPases. Given the central role of VirD4 in type IV secretion, our study provides mechanistic insights on a process that mediates the dangerous spread of antibiotic resistance genes among bacterial populations.


Assuntos
Agrobacterium tumefaciens/ultraestrutura , Substâncias Macromoleculares/isolamento & purificação , Substâncias Macromoleculares/ultraestrutura , Sistemas de Secreção Tipo IV/isolamento & purificação , Sistemas de Secreção Tipo IV/ultraestrutura , Agrobacterium tumefaciens/genética , Conjugação Genética , Microscopia Eletrônica de Transmissão , Mapas de Interação de Proteínas
5.
J Bacteriol ; 200(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29311273

RESUMO

Bacterial conjugation, a mechanism of horizontal gene transfer, is the major means by which antibiotic resistance spreads among bacteria (1, 2). Conjugative plasmids are transferred from one bacterium to another through a type IV secretion system (T4SS) in the form of single-stranded DNA covalently attached to a protein called relaxase. The relaxase is fully functional both in a donor cell (prior to conjugation) and recipient cell (after conjugation). Here, we demonstrate that the protein substrate has to unfold for efficient translocation through the conjugative T4SS. Furthermore, we present various relaxase modifications that preserve the function of the relaxase but block substrate translocation. This study brings us a step closer to deciphering the complete mechanism of T4SS substrate translocation, which is vital for the development of new therapies against multidrug-resistant pathogenic bacteria.IMPORTANCE Conjugation is the principal means by which antibiotic resistance genes spread from one bacterium to another (1, 2). During conjugation, a covalent complex of single-stranded DNA and a protein termed relaxase is transported by a type IV secretion system. To date, it is not known whether the relaxase requires unfolding prior to transport. In this report, we use functional assays to monitor the transport of wild-type relaxase and variants containing unfolding-resistant domains and show that these domains reduce conjugation and protein transport dramatically. Mutations that lower the free energy of unfolding in these domains do not block translocation and can even promote it. We thus conclude that the unfolding of the protein substrate is required during transport.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética/fisiologia , Desdobramento de Proteína , Sistemas de Secreção Tipo IV/fisiologia , Proteínas de Bactérias/química , Escherichia coli , Plasmídeos , Tetra-Hidrofolato Desidrogenase/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(51): 20895-900, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213255

RESUMO

Cytoplasmic dynein is the major motor protein responsible for microtubule minus-end-directed movements in most eukaryotic cells. It transports a variety of cargoes and has numerous functions during spindle assembly and chromosome segregation. It is a large complex of about 1.4 MDa composed of six different subunits, interacting with a multitude of different partners. Most biochemical studies have been performed either with the native mammalian cytoplasmic dynein complex purified from tissue or, more recently, with recombinant dynein fragments from budding yeast and Dictyostelium. Hardly any information exists about the properties of human dynein. Moreover, experiments with an entire human dynein complex prepared from recombinant subunits with a well-defined composition are lacking. Here, we reconstitute a complete cytoplasmic dynein complex using recombinant human subunits and characterize its biochemical and motile properties. Using analytical gel filtration, sedimentation-velocity ultracentrifugation, and negative-stain electron microscopy, we demonstrate that the smaller subunits of the complex have an important structural function for complex integrity. Fluorescence microscopy experiments reveal that while engaged in collective microtubule transport, the recombinant human cytoplasmic dynein complex is an active, microtubule minus-end-directed motor, as expected. However, in contrast to recombinant dynein of nonmetazoans, individual reconstituted human dynein complexes did not show robust processive motility, suggesting a more intricate mechanism of processivity regulation for the human dynein complex. In the future, the comparison of reconstituted dynein complexes from different species promises to provide molecular insight into the mechanisms regulating the various functions of these large molecular machines.


Assuntos
Dineínas do Citoplasma/química , Catálise , Cromatografia em Gel/métodos , Citoplasma/metabolismo , Dimerização , Dineínas/química , Escherichia coli/metabolismo , Humanos , Microscopia Eletrônica/métodos , Microtúbulos/metabolismo , Proteínas Motores Moleculares/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Ultracentrifugação
8.
Sci Transl Med ; 14(654): eabf1922, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857828

RESUMO

Peptic ulcer disease is a frequent clinical problem with potentially serious complications such as bleeding or perforation. A decisive factor in the pathogenesis of peptic ulcers is gastric acid, the secretion of which is controlled by the hormone gastrin released from gastric G cells. However, the molecular mechanisms regulating gastrin plasma concentrations are poorly understood. Here, we identified a semaphorin-plexin signaling pathway that operates in gastric G cells to inhibit gastrin expression on a transcriptional level, thereby limiting food-stimulated gastrin release and gastric acid secretion. Using a systematic siRNA screening approach combined with biochemical, cell biology, and in vivo mouse experiments, we found that the RasGAP protein Rasal1 is a central mediator of plexin signal transduction, which suppresses gastrin expression through inactivation of the small GTPase R-Ras. Moreover, we show that Rasal1 is pathophysiologically relevant for the pathogenesis of peptic ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs), a main risk factor of peptic ulcers in humans. Last, we show that application of recombinant semaphorin 4D alleviates peptic ulcer disease in mice in vivo, demonstrating that this signaling pathway can be harnessed pharmacologically. This study unravels a mode of G cell regulation that is functionally important in gastric homeostasis and disease.


Assuntos
Úlcera Péptica , Semaforinas , Animais , Moléculas de Adesão Celular , Proteínas Ativadoras de GTPase , Gastrinas/efeitos adversos , Gastrinas/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso , Úlcera Péptica/induzido quimicamente , Transdução de Sinais
9.
Nat Rev Microbiol ; 13(6): 343-59, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25978706

RESUMO

Bacteria have evolved a remarkable array of sophisticated nanomachines to export various virulence factors across the bacterial cell envelope. In recent years, considerable progress has been made towards elucidating the structural and molecular mechanisms of the six secretion systems (types I-VI) of Gram-negative bacteria, the unique mycobacterial type VII secretion system, the chaperone-usher pathway and the curli secretion machinery. These advances have greatly enhanced our understanding of the complex mechanisms that these macromolecular structures use to deliver proteins and DNA into the extracellular environment or into target cells. In this Review, we explore the structural and mechanistic relationships between these single- and double-membrane-embedded systems, and we briefly discuss how this knowledge can be exploited for the development of new antimicrobial strategies.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Membrana Celular/fisiologia , Fímbrias Bacterianas/fisiologia , Bactérias Gram-Negativas/fisiologia , Chaperonas Moleculares/fisiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Membrana Celular/ultraestrutura , Fímbrias Bacterianas/ultraestrutura , Bactérias Gram-Negativas/ultraestrutura , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Fatores de Virulência/metabolismo
10.
Curr Opin Struct Biol ; 27: 16-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24709394

RESUMO

Bacteria use type IV secretion (T4S) systems to deliver DNA and protein substrates to a diverse range of prokaryotic and eukaryotic target cells. T4S systems have great impact on human health, as they are a major source of antibiotic resistance spread among bacteria and are central to infection processes of many pathogens. Therefore, deciphering the structure and underlying translocation mechanism of T4S systems is crucial to facilitate development of new drugs. The last five years have witnessed considerable progress in unraveling the structure of T4S system subassemblies, notably that of the T4S system core complex, a large 1 MegaDalton (MDa) structure embedded in the double membrane of Gram-negative bacteria and made of 3 of the 12 T4S system components. However, the recent determination of the structure of -3MDa assembly of 8 of these components has revolutionized our views of T4S system architecture and opened up new avenues of research, which are discussed in this review.


Assuntos
Sistemas de Secreção Bacterianos , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Metabolismo Energético , Fímbrias Bacterianas/metabolismo , Humanos
11.
Nat Cell Biol ; 16(8): 804-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997520

RESUMO

Growing microtubule end regions recruit a variety of proteins collectively termed +TIPs, which confer local functions to the microtubule cytoskeleton. +TIPs form dynamic interaction networks whose behaviour depends on a number of potentially competitive and hierarchical interaction modes. The rules that determine which of the various +TIPs are recruited to the limited number of available binding sites at microtubule ends remain poorly understood. Here we examined how the human dynein complex, the main minus-end-directed motor and an important +TIP (refs , , ), is targeted to growing microtubule ends in the presence of different +TIP competitors. Using a total internal reflection fluorescence microscopy-based reconstitution assay, we found that a hierarchical recruitment mode targets the large dynactin subunit p150Glued to growing microtubule ends via EB1 and CLIP-170 in the presence of competing SxIP-motif-containing peptides. We further show that the human dynein complex is targeted to growing microtubule ends through an interaction of the tail domain of dynein with p150Glued. Our results highlight how the connectivity and hierarchy within dynamic +TIP networks are orchestrated.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Complexo Dinactina , Dineínas/química , Dineínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa