Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiat Environ Biophys ; 53(2): 291-303, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24469226

RESUMO

Until very recently, analysis of bone biopsies by means of the method of electron paramagnetic resonance (EPR) collected after surgery or amputation has been considered as the sole reliable method for radiation dose assessment in hands and feet. EPR measurements in finger- and toenail have been considered for accident dosimetry for a long time. Human nails are very attractive biophysical materials because they are easy to collect and pertinent to whole body irradiation. Information on the existence of a radiation-induced signal in human nails has been reported almost 25 years ago. However, no practical application of EPR dosimetry on nails is known to date because, from an EPR perspective, nails represent a very complex material. In addition to the radiation-induced signal (RIS), parasitic and intense signals are induced by the mechanical stress caused when collecting nail samples (mechanically induced signals-MIS). Moreover, it has been demonstrated that the RIS stability is strongly influenced not only by temperature but also by humidity. Most studies of human nails were carried out using conventional X-band microwave band (9 GHz). Higher frequency Q-band (37 GHz) provides higher spectral resolution which allows obtaining more detailed information on the nature of different radicals in human nails. Here, we present for the first time a complete description of the different EPR signals identified in nails including parasitic, intrinsic and RIS. EPR in both X- and Q-bands was used. Four different MIS signals and five different signals specific to irradiation with ionizing radiation have been identified. The most important outcome of this work is the identification of a stable RIS component. In contrast with other identified (unstable) RIS components, this component is thermally and time stable and not affected by the physical contact of fingernails with water. A detailed description of this signal is provided here. The discovery of stable radiation-induced radical(s) associated with the RIS component mentioned opens a way for broad application of EPR dosimetry in human nails. Consequently, several recent dosimetry assessments of real accident cases have been performed based on the described measurements and analyses of this component.


Assuntos
Radicais Livres/metabolismo , Unhas/metabolismo , Unhas/efeitos da radiação , Radiometria/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Raios gama/efeitos adversos , Humanos , Masculino , Temperatura
2.
Phys Med ; 106: 102518, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36638707

RESUMO

PURPOSE: Accurate dosimetry is paramount to study the FLASH biological effect since dose and dose rate are critical dosimetric parameters governing its underlying mechanisms. With the goal of assessing the suitability of standard clinical dosimeters in a very-high dose rate (VHDR) experimental setup, we evaluated the ion collection efficiency of several commercially available air-vented ionization chambers (IC) in conventional and VHDR proton irradiation conditions. METHODS: A cyclotron at the Orsay Proton Therapy Center was used to deliver VHDR pencil beam scanning irradiation. Ion recombination correction factors (ks) were determined for several detectors (Advanced Markus, PPC05, Nano Razor, CC01) at the entrance of the plateau and at the Bragg peak, using the Niatel model, the Two-voltage method and Boag's analytical formula for continuous beams. RESULTS: Mean dose rates ranged from 4 Gy/s to 385 Gy/s, and instantaneous dose rates up to 1000 Gy/s were obtained with the experimental set-up. Recombination correction factors below 2 % were obtained for all chambers, except for the Nano Razor, at VHDRs with variations among detectors, while ks values were significantly smaller (0.8 %) for conventional dose rates. CONCLUSIONS: While the collection efficiency of the probed ICs in scanned VHDR proton therapy is comparable to those in the conventional regime with recombination coefficiens smaller than 1 % for mean dose rates up to 177 Gy/s, the reduction in collection efficiency for higher dose rates cannot be ignored when measuring the absorbed dose in pre-clinical proton scanned FLASH experiments and clinical trials.


Assuntos
Terapia com Prótons , Prótons , Radiometria/métodos , Terapia com Prótons/métodos , Ciclotrons , Dosímetros de Radiação
3.
Radiat Res ; 199(6): 616-627, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084254

RESUMO

Inter-laboratory exercises are important tools within the European network for biological dosimetry and physical retrospective dosimetry (RENEB) to validate and improve the performance of member laboratories and to ensure an operational network with high quality standards for dose estimations in case of a large-scale radiological or nuclear event. In addition to the RENEB inter-laboratory comparison 2021, several inter-laboratory comparisons have been performed in the frame of RENEB for a number of assays in recent years. This publication gives an overview of RENEB inter-laboratory comparisons for biological dosimetry assays in the past and a final summary of the challenges and lessons learnt from the RENEB inter-laboratory comparison 2021. In addition, the dose estimates of all RENEB inter-laboratory comparisons since 2013 that have been conducted for the dicentric chromosome assay, the most established and applied assay, are compared and discussed.


Assuntos
Exposição à Radiação , Monitoramento de Radiação , Exposição à Radiação/análise , Estudos Retrospectivos , Bioensaio , Laboratórios
4.
Radiat Res ; 199(6): 535-555, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310880

RESUMO

Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.


Assuntos
Bioensaio , Coleta de Amostras Sanguíneas , Estudos Retrospectivos , Citocinese , Espectroscopia de Ressonância de Spin Eletrônica
5.
Phys Med Biol ; 66(22)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34673555

RESUMO

The Orsay Proton therapy Center (ICPO) has a long history of intracranial radiotherapy using both double scattering (DS) and pencil beam scanning (PBS) techniques, and is actively investigating a promising modality of spatially fractionated radiotherapy using proton minibeams (pMBRT). This work provides a comprehensive comparison of the organ-specific secondary neutron dose due to each of these treatment modalities, assessed using Monte Carlo (MC) algorithms and measurements. A MC model of a universal nozzle was benchmarked by comparing the neutron ambient dose equivalent,H*(10), in the gantry room with measurements obtained using a WENDI-II counter. The secondary neutron dose was evaluated for clinically relevant intracranial treatments of patients of different ages, in which secondary neutron doses were scored in anthropomorphic phantoms merged with the patients' images. The MC calculatedH*(10) values showed a reasonable agreement with the measurements and followed the expected tendency, in which PBS yields the lowest dose, followed by pMBRT and DS. Our results for intracranial treatments show that pMBRT yielded a higher secondary neutron dose for organs closer to the target volume, while organs situated furthest from the target volume received a greater quantity of neutrons from the passive scattering beam line. To the best of our knowledge, this is the first study to compare MC secondary neutron dose estimates in clinical treatments between these various proton therapy modalities and to realistically quantify the secondary neutron dose contribution of clinical pMBRT treatments. The method established in this study will enable epidemiological studies of the long-term effects of intracranial treatments at ICPO, notably radiation-induced second malignancies.


Assuntos
Neoplasias Induzidas por Radiação , Terapia com Prótons , Humanos , Método de Monte Carlo , Nêutrons , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica
6.
Radiat Res ; 195(3): 253-264, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347576

RESUMO

With the use of ionizing radiation comes the risk of accidents and malevolent misuse. When unplanned exposures occur, there are several methods which can be used to retrospectively reconstruct individual radiation exposures; biological methods include analysis of aberrations and damage of chromosomes and DNA, while physical methods rely on luminescence (TL/OSL) or EPR signals. To ensure the quality and dependability of these methods, they should be evaluated under realistic exposure conditions. In 2019, EURADOS Working Group 10 and RENEB organized a field test with the purpose of evaluating retrospective dosimetry methods as carried out in potential real-life exposure scenarios. A 1.36 TBq 192Ir source was used to irradiate anthropomorphic phantoms in different geometries at doses of several Gy in an outdoor open-air geometry. Materials intended for accident dosimetry (including mobile phones and blood) were placed on the phantoms together with reference dosimeters (LiF, NaCl, glass). The objective was to estimate radiation exposures received by individuals as measured using blood and fortuitous materials, and to evaluate these methods by comparing the estimated doses to reference measurements and Monte Carlo simulations. Herein we describe the overall planning, goals, execution and preliminary outcomes of the 2019 field test. Such field tests are essential for the development of new and existing methods. The outputs from this field test include useful experience in terms of planning and execution of future exercises, with respect to time management, radiation protection, and reference dosimetry to be considered to obtain relevant data for analysis.


Assuntos
Doses de Radiação , Monitoramento de Radiação/métodos , Radiação Ionizante , Humanos , Radioisótopos de Irídio/efeitos adversos , Método de Monte Carlo , Imagens de Fantasmas , Exposição à Radiação/efeitos adversos , Proteção Radiológica , Radiometria/métodos
7.
Sci Rep ; 11(1): 9756, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963206

RESUMO

Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.


Assuntos
Células Sanguíneas/metabolismo , Raios gama/efeitos adversos , Regulação da Expressão Gênica/efeitos da radiação , Laboratórios , Doses de Radiação , Exposição à Radiação , Raios X/efeitos adversos , Relação Dose-Resposta à Radiação , Humanos , Reprodutibilidade dos Testes
8.
Radiat Prot Dosimetry ; 191(1): 9-24, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32995890

RESUMO

In the event of a criticality accident, not only the maximal doses received by the victims must be determined but it is also crucial to evaluate the doses to the different organs. With a neutron component, morphology is a key parameter in the organ dose calculation. As the simulation tools can be time consuming to proceed, especially if morphology is taken into account, for all the victims, it may be very useful to have a database of conversion coefficients that allow to obtain the organ doses from the dose measured in the dosemeter for different kinds of morphology. In this paper, we present a study performed to evaluate such conversion coefficients using voxelized anthropomorphic phantoms. These coefficients take into account two crucial parameters having an impact on the dose at the organs: the orientation of the victim in the radiation field and the morphology, that is to say the body mass index of the different victims.


Assuntos
Nêutrons , Radiometria , Acidentes , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação
9.
Cancer Radiother ; 24(2): 138-142, 2020 Apr.
Artigo em Francês | MEDLINE | ID: mdl-32061532

RESUMO

The decision to irradiate during pregnancy is based on a risk benefit compromise of two kinds: maternal risk and fetal risk. The aim of this work is to determine the foetal risk, and uterine dose measurement in proton therapy. Foetal exposure during treatment is linked to two sources: the treatment phase, and the repositioning phase. An Alderson-Rando anthropomorphic ghost (170cm, 74kg) was positioned on the table in the treatment position. A tissue-equivalent proportional counter (TEPC), adapted to the analysis of complex radiation fields (neutron and photonics), was used to determine the irradiation related to the treatment phase. An AT1123 radiation survey meter was used to measure photons generated by X-ray radiation. I dosimetry was proposed using radio-photoluminescent dosimeters, allowing for a daily check of the dose received in the uterus. The treatment phase produces higher uterine doses than the positioning phase, but these remain very low. The equivalent dose received in the uterus for the entire treatment is estimated at 840 µSv. Using a methodology for measuring the out-of-field dose with pencil beam scanning proton therapy, the foetal dose in the first trimester was well below the acceptance dose of 100 mGy determined by the International Commission on Radiological Protection.


Assuntos
Feto/efeitos da radiação , Posicionamento do Paciente/efeitos adversos , Complicações Neoplásicas na Gravidez/radioterapia , Exposição à Radiação , Útero/efeitos da radiação , Adulto , Feminino , Cabeça/efeitos da radiação , Humanos , Nêutrons , Posicionamento do Paciente/métodos , Imagens de Fantasmas , Fótons , Gravidez , Primeiro Trimestre da Gravidez
10.
Radiat Environ Biophys ; 48(3): 295-310, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19521713

RESUMO

The results of electron paramagnetic resonance (EPR) measurements in irradiated fingernails are presented. In total, 83 samples of different fingernails were studied. Five different groups of samples were selected based on the collection time of fingernail samples, their level of mechanical stress, and the number and size of clippings: (1) recently (<24 h) cut, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-fresh, controlled); (2) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment (10 min of water soaking, 5 min of drying time) to reduce the mechanical stress caused by cutting the samples, and with rigorous control of size and number of clippings (unstressed-fresh, controlled); (3) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to study, irradiated and measured with EPR without any treatment of samples, and with rigorous control of size and number of clippings (stressed-old, controlled); (4) previously (>24 h) cut, stored at room temperature, additionally cut into small pieces immediately prior to the study, irradiated and measured with EPR after application of a special treatment to reduce mechanical stress caused by cut, and with rigorous control of size and number of clippings (unstressed-old, controlled); and (5) recently (<24 h) cut, irradiated and measured with EPR after application of a special treatment to reduce the mechanical stress caused by cut, and without rigorous control of size and number of clippings (unstressed-fresh, uncontrolled). Except for the fifth selected group, variability of the dose dependence inside all groups was found to be not statistically significant, although the variability among the different groups was significant. Comparison of the mean dose dependences obtained for each group allowed selection of key factors responsible for radiation sensitivity (dose response per unit of mass and dose) and the shape of dose dependence in fingernails. The major factor responsible for radiation sensitivity of fingernails was identified as their water content, which can affect radiation sensitivity up to 35%. The major factor responsible for the shape of the radiation sensitivity was identified as the mechanical stress. At a significant level of mechanical stress, the shape of the dose dependence is linear in the studied dose range (<20 Gy), and in lesser-stressed samples it is of an exponential growth including saturation, which depends on the degree of mechanical stress. In view of the findings, recommendations are discussed and presented for the appropriate protocol for EPR dose measurements in fingernails.


Assuntos
Unhas/efeitos da radiação , Adulto , Relação Dose-Resposta à Radiação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Imersão , Pessoa de Meia-Idade , Doses de Radiação , Estresse Mecânico , Temperatura , Fatores de Tempo , Água , Adulto Jovem
11.
Radiat Prot Dosimetry ; 131(1): 130-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18725379

RESUMO

Many accidents in radiotherapy have been reported in France over the last years. This is due to the recent legal obligation to declare to the national safety authorities any significant incident relative to the use of ionising radiation including medical applications. The causes and consequences of the most serious events in radiotherapy are presented in this paper. Lessons can be learned from possible technical dysfunctions, from human errors or organisational weaknesses as to how such events can be prevented. The technical aspects are addressed here: in particular, dosimetric issues.


Assuntos
Liberação Nociva de Radioativos/prevenção & controle , Radioterapia , Encéfalo/efeitos da radiação , Encéfalo/cirurgia , França , Neoplasias de Cabeça e Pescoço/radioterapia , Doença de Hodgkin/radioterapia , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Equipamentos de Proteção , Radiometria , Segurança , Espalhamento de Radiação , Software
12.
Radiat Prot Dosimetry ; 131(1): 51-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18838437

RESUMO

Dose assessment procedures for cosmic radiation exposure of aircraft crew have been introduced in most European countries in accordance with the corresponding European directive and national regulations. However, the radiation exposure due to solar particle events is still a matter of scientific research. Here we describe the European research project CONRAD, WP6, Subgroup-B, about the current status of available solar storm measurements and existing models for dose estimation at flight altitudes during solar particle events leading to ground level enhancement (GLE). Three models for the numerical dose estimation during GLEs are discussed. Some of the models agree with limited experimental data reasonably well. Analysis of GLEs during geomagnetically disturbed conditions is still complex and time consuming. Currently available solar particle event models can disagree with each other by an order of magnitude. Further research and verification by on-board measurements is still needed.


Assuntos
Aeronaves , Altitude , Radiação Cósmica , Modelos Teóricos , Doses de Radiação , Atividade Solar , Humanos , Exposição Ocupacional , Monitoramento de Radiação
13.
Radiat Meas ; 42(6-7): 1085-1088, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18163158

RESUMO

There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.

14.
Radiat Meas ; 42(6-7): 1110-1113, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18163159

RESUMO

By using EPR measurements of radiation-induced radicals it is possible to utilize human fingernails to estimate radiation dose after-the-fact. One of the potentially limiting factors in this approach is the presence of artifacts due to mechanically induced EPR signals (MIS) caused by mechanical stress during the collection and preparation of the samples and the so-called background (non-radiation) signal (BKS). The MIS and BKS have spectral parameters (shape, g-factor and linewidth) that overlap with the radiation-induced signal (RIS) and therefore, if not taken into account properly, could result in a considerable overestimation of the dose. We have investigated the use of different treatments of fingernails with chemical reagents to reduce the MIS and BKS. The most promising chemical treatment (20 min with 0.1 M dithiothreitol aqueous solution) reduced the contribution of MIS and BKS to the total intensity of EPR signal of irradiated fingernails by a factor of 10. This makes it potentially feasible to measure doses as low as 1 Gy almost immediately after irradiation. However, the chemical treatment reduces the intensity of the RIS and modifies dose dependence. This can be compensated by use of an appropriate calibration curve for assessment of dose. On the basis of obtained results it appears feasible to develop a field-deployable protocol that could use EPR measurements of samples of fingernails to assist in the triage of individuals with potential exposure to clinically significant doses of radiation.

15.
Radiat Prot Dosimetry ; 125(1-4): 349-54, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17337734

RESUMO

Following modifications on the beam line at the Orsay Protontherapy Center, dose measurements were performed in order to make a dose map in the treatment rooms and in the delimited radiation-controlled area around beam line. Measurements were performed using tissue-equivalent proportional counters and rem-counters. Analysis of TEPC single event measurements showed that high LET components (>10 keV.microm(-1)) represent 90 to 99% of total dose equivalent in the treatment rooms and 50 to 90% in the controlled area and quality factors range, respectively between 2 and 15. A fast neutron component was identified in the treatment rooms, where dose equivalent rate varied between few microSv.h(-1) to some dozen of mSv.h(-1). In high-energy radiation field rem-counters underestimated TEPC values for neutron component. The variation between instruments response according to the location is linked to energetic spectrum variations and instrument characteristics.


Assuntos
Exposição Ambiental/análise , Terapia com Prótons , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Radioterapia de Alta Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Internacionalidade , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Radiat Prot Dosimetry ; 125(1-4): 412-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17043055

RESUMO

The European-Commission-supported project DOSMAX (Dosimetry of Aircrew Exposure to Radiation During Solar Maximum) was aimed at measuring aircrew exposure to cosmic radiation on-board the aircraft during solar maximum. During a dedicated international comparison mission (Co-ordinated Access to Aircraft for Transnational Environmental Research; CAATER) different measurement techniques have been compared by six European institutes (Results of the CAATER Mission, DOSMAX Meeting, Dublin, June 2004). In this paper, we present the tissue-equivalent proportional counter (TEPC) measurements carried out by ARC Seibersdorf research (ARCS), Austria, and Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France, together with a comparison with simulation results under the same conditions. The whole flight campaign consists of four different in-flight investigations performed at two different geographical positions at 12.2 km (FL 400) and 9.8 km (FL 320). One location was chosen above Rome (42 degrees North, 12 degrees East), Italy, for high cut-off rigidity (6.4 GV) and the second above Aalborg (57 degrees North, 10 degrees East), Denmark, for low cut-off rigidity (1.8 GV). The TEPC measurements are presented in terms of absorbed dose and ambient dose equivalent as well as microdosimetric spectra as a function of lineal energy. For the same conditions of the CAATER flights the response of the TEPC has also been simulated by using the Monte Carlo Transport Code FLUKA (version 2003). The results from simulations are compared with measurements and they show a reasonable agreement.


Assuntos
Aviação , Radiação Cósmica , Modelos Teóricos , Exposição Ocupacional/análise , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Internacionalidade , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Radiat Prot Dosimetry ; 125(1-4): 355-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17337741

RESUMO

In the case of a radiological accident due to external exposure, the assessment of the organs and whole body dose received by the victim is fundamental information for therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: Monte Carlo (MC) calculations and ESR spectroscopy performed on materials removed from the victim. The aim of the present study is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure using dose ESR measurements performed on one or several points of the body. The chosen configurations were, on the one hand, standard homogeneous exposures (ICPR 74) and, on the other hand, exposures typical of accidental situations (source at 1m, in a pocket, in a hand and contaminated floor). The study was performed for monoenergetic photons and neutrons, and several sources (60Co, 137Cs, 192Ir, 252Cf and AmBe).


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Exposição Ambiental/análise , Modelos Biológicos , Especificidade de Órgãos , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Contagem Corporal Total/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Internacionalidade , Nêutrons , Fótons , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Radiat Prot Dosimetry ; 125(1-4): 369-75, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17189278

RESUMO

IRSN has been asked by SNCF (French Railways) to carry out measurements in order to establish the values of ambient dose equivalents H*(10) in the vicinity of shipments of radioactive materials to assess the external exposure to ionising radiation to which employees may be subjected during the carriage of radioactive goods. Detailed dosimetric characterisations of the wagons have been made and the external exposure at different stages of the work that is done by the employees have been measured in terms of H*(10). For the study presented in this paper, and corresponding to a used fuel shipment composed of UO2 and UO2-PuO2, it has been observed that the photon and neutron doses are very similar. In addition, the order of magnitude of the total dose integrated by an employee who would carry out 100 times the series of essential operational tasks, has been found to be approximately 250 microSv. This value is compared with those observed for other previously investigated shipments involving the exposure to photon fields only.


Assuntos
Carga Corporal (Radioterapia) , Exposição Ambiental/análise , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Radioisótopos/análise , Ferrovias , Manejo de Espécimes , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , França , Internacionalidade , Modelos Biológicos , Doses de Radiação , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Radiat Prot Dosimetry ; 126(1-4): 577-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17576654

RESUMO

Aircrew is in general receiving a higher average annual dose than other occupationally exposed personnel, and about half of the effective dose is deposited by high-LET neutron secondaries. A recent investigation of the cancer incidence following the atomic bombs at Hiroshima and Nagasaki has put forward the possibility that the relative biological efficiency for neutrons could be underestimated. If so, the effective dose to aircrew from this component would increase and the estimation of this component will become even more important. Different ambient dose equivalent measurement techniques and calculation methods have recently been compared on a dedicated flight. The experimental results are compared with calculations made with the codes EPCARD 3.2 and an updated version of FLUKA and different galactic proton spectra. The aircraft circulated within the target areas at two constant altitudes with a flight route variation of only about 1 degrees in longitude and latitude to reduce the influence from variations in atmospheric and geomagnetic shielding. The instrumentation consisted of tissue-equivalent proportional counters (TEPC) and a silicon diode spectrometer. Measurements were performed for 2 h to reduce the statistical uncertainties in the results. The TEPCs were evaluated either according to single-event analysis techniques or the variance-covariance method. Besides the total ambient dose equivalent, the instruments can be evaluated to reveal the low- and high-LET components. The EPCARD and FLUKA simulations can determine the contribution from each type of particle directly. The ratio between the calculated and the measured average value of the ambient dose equivalent rate was 1.00 +/- 0.08 with all instruments included for EPCARD and 0.97 +/- 0.07 when FLUKA was used. The measured high-LET component and the calculated neutron component are not quite identical, but should be similar. The agreement was always within 20%. The high-LET component contributed with about 57% at N57 E8 and 48% at N42 E12.


Assuntos
Aeronaves , Nêutrons , Exposição Ocupacional/análise , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Eficiência Biológica Relativa , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Radiat Prot Dosimetry ; 125(1-4): 421-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17711868

RESUMO

The study of naturally occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on-board the aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some millisieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerised system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented.


Assuntos
Aviação , Carga Corporal (Radioterapia) , Radiação Cósmica , Exposição Ambiental/análise , Modelos Biológicos , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Simulação por Computador , Desenho de Equipamento , França , Doses de Radiação , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa