Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 25(15): 7407-7417, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34219376

RESUMO

Renal fibrosis is a progressive histological manifestation leading to chronic kidney disease (CKD) and associated with mitochondrial dysfunction. In previous work, we showed that Bemcentinib, an Axl receptor tyrosine kinase inhibitor, reduced fibrosis development. In this study, to investigate its effects on mitochondrial dysfunction in renal fibrosis, we analysed genome-wide transcriptomics data from a unilateral ureter obstruction (UUO) murine model in the presence or absence of bemcentinib (n = 6 per group) and SHAM-operated (n = 4) mice. Kidney ligation resulted in dysregulation of mitochondria-related pathways, with a significant reduction in the expression of oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), citric acid cycle (TCA), response to reactive oxygen species and amino acid metabolism-related genes. Bemcentinib treatment increased the expression of these genes. In contrast, AKT/PI3K signalling pathway genes were up-regulated upon UUO, but bemcentinib largely inhibited their expression. At the functional level, ligation reduced mitochondrial biomass, which was increased upon bemcentinib treatment. Serum metabolomics analysis also showed a normalizing amino acid profile in UUO, compared with SHAM-operated mice following bemcentinib treatment. Our data suggest that mitochondria and mitochondria-related pathways are dramatically affected by UUO surgery and treatment with Axl-inhibitor bemcentinib partially reverses these effects.


Assuntos
Benzocicloeptenos/uso terapêutico , Mitocôndrias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Insuficiência Renal Crônica/tratamento farmacológico , Triazóis/uso terapêutico , Animais , Benzocicloeptenos/farmacologia , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Insuficiência Renal Crônica/etiologia , Triazóis/farmacologia , Obstrução Ureteral/complicações , Receptor Tirosina Quinase Axl
2.
Int J Cancer ; 144(7): 1735-1745, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289977

RESUMO

Glioblastoma multiforme (GBM) has a poor prognosis with an overall survival of 14-15 months after surgery, radiation and chemotherapy using temozolomide (TMZ). A major problem is that the tumors acquire resistance to therapy. In an effort to improve the therapeutic efficacy of TMZ, we performed a genome-wide RNA interference (RNAi) synthetic lethality screen to establish a functional gene signature for TMZ sensitivity in human GBM cells. We then queried the Connectivity Map database to search for drugs that would induce corresponding changes in gene expression. By this approach we identified several potential pharmacological sensitizers to TMZ, where the most potent drug was the established antipsychotic agent Thioridazine, which significantly improved TMZ sensitivity while not demonstrating any significant toxicity alone. Mechanistically, we show that the specific chemosensitizing effect of Thioridazine is mediated by impairing autophagy, thereby preventing adaptive metabolic alterations associated with TMZ resistance. Moreover, we demonstrate that Thioridazine inhibits late-stage autophagy by impairing fusion between autophagosomes and lysosomes. Finally, Thioridazine in combination with TMZ significantly inhibits brain tumor growth in vivo, demonstrating the potential clinical benefits of compounds targeting the autophagy-lysosome pathway. Our study emphasizes the feasibility of exploiting drug repurposing for the design of novel therapeutic strategies for GBM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Temozolomida/administração & dosagem , Tioridazina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Autofagossomos/efeitos dos fármacos , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/genética , Humanos , Lisossomos/efeitos dos fármacos , Camundongos , Mutações Sintéticas Letais , Temozolomida/uso terapêutico , Tioridazina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Lipid Res ; 58(7): 1362-1373, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473603

RESUMO

Hepatic mitochondrial function, APOC-III, and LPL are potential targets for triglyceride (TG)-lowering drugs. After 3 weeks of dietary treatment with the compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), the hepatic mitochondrial FA oxidation increased more than 5-fold in male Wistar rats. Gene expression analysis in liver showed significant downregulation of APOC-III and upregulation of LPL and the VLDL receptor. This led to lower hepatic (53%) and plasma (73%) TG levels. Concomitantly, liver-specific biomarkers related to mitochondrial biogenesis and function (mitochondrial DNA, citrate synthase activity, and cytochrome c and TFAM gene expression) were elevated. Interestingly, 1-triple TTA lowered plasma acetylcarnitine levels, whereas the concentration of ß-hydroxybutyrate was increased. The hepatic energy state was reduced in 1-triple TTA-treated rats, as reflected by increased AMP/ATP and decreased ATP/ADP ratios, whereas the energy state remained unchanged in muscle and heart. The 1-triple TTA administration induced gene expression of uncoupling protein (UCP)2 and UCP3 in liver. In conclusion, the 1-triple TTA-mediated clearance of blood TG may result from lowered APOC-III production, increased hepatic LPL gene expression, mitochondrial FA oxidation, and (re)uptake of VLDL facilitating drainage of FAs to the liver for ß-oxidation and production of ketone bodies as extrahepatic fuel. The possibility that UCP2 and UCP3 mediate a moderate degree of mitochondrial uncoupling should be considered.


Assuntos
Apolipoproteína C-III/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Triglicerídeos/sangue , Ácido Acético/química , Ácido Acético/farmacologia , Acetilcarnitina/metabolismo , Animais , Carnitina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Oxirredução , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
4.
J Biol Chem ; 290(46): 27644-59, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26432643

RESUMO

The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/metabolismo , Metaboloma , Mitocôndrias/metabolismo , NAD/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Glicólise , Células HEK293 , Humanos , Proteínas Mitocondriais , Dados de Sequência Molecular , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Proteínas de Transporte de Nucleotídeos , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cancer Med ; 13(11): e7318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872378

RESUMO

BACKGROUND: In vitro drug screening that is more translatable to the in vivo tumor environment can reduce both time and cost of cancer drug development. Here we address some of the shortcomings in screening and show how treatment with 5-fluorouracil (5-FU) in 2D and 3D culture models of colorectal cancer (CRC) and pancreatic ductal adenocarcinomas (PDAC) give different responses regarding growth inhibition. METHODS: The sensitivity of the cell lines at clinically relevant 5-FU concentrations was monitored over 4 days of treatment in both 2D and 3D cultures for CRC (SW948 and HCT116) and PDAC (Panc-1 and MIA-Pa-Ca-2) cell lines. The 3D cultures were maintained beyond this point to enable a second treatment cycle at Day 14, following the timeline of a standard clinical 5-FU regimen. RESULTS: Evaluation after one cycle did not reveal significant growth inhibition in any of the CRC or PDAC 2D models. By the end of the second cycle of treatment the CRC spheroids reached 50% inhibition at clinically achievable concentrations in the 3D model, but not in the 2D model. The PDAC models were not sensitive to clinical doses even after two cycles. High content viability metrics point to even lower response in the resistant PDAC models. CONCLUSION: This study reveals the limitations of testing drugs in 2D cancer models and short exposure in 3D models, and the importance of using appropriate growth inhibition analysis. We found that screening with longer exposure and several cycles of treatment in 3D models suggests a more reliable way to assess drug sensitivity.


Assuntos
Proliferação de Células , Sobrevivência Celular , Fluoruracila , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fluoruracila/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Esferoides Celulares/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Técnicas de Cultura de Células , Antineoplásicos/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos
7.
Newborn (Clarksville) ; 2(1): 19-44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206581

RESUMO

Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important for the generation of chemical energy needed to power various cellular functions and also support metabolic, energetic, and epigenetic regulation in various cells. These organelles are also important for communication with the nucleus and other cellular structures, to maintain developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing information shows mitochondrial defects as an important cause of inherited disorders in different organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial dysfunction, and possibilities for clinical intervention. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.

8.
Nat Cancer ; 4(5): 648-664, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37169842

RESUMO

The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.


Assuntos
Glioblastoma , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Proteína GAP-43/metabolismo , Proteína GAP-43/uso terapêutico , Axônios/metabolismo , Axônios/patologia , Linhagem Celular Tumoral , Regeneração Nervosa , Mitocôndrias/metabolismo , Mitocôndrias/patologia
9.
Cancer Metab ; 10(1): 9, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578327

RESUMO

BACKGROUND: Most in vitro cancer cell experiments have been performed using 2D models. However, 3D spheroid cultures are increasingly favored for being more representative of in vivo tumor conditions. To overcome the translational challenges with 2D cell cultures, 3D systems better model more complex cell-to-cell contact and nutrient levels present in a tumor, improving our understanding of cancer complexity. Despite this need, there are few reports on how 3D cultures differ metabolically from 2D cultures. METHODS: Well-described cell lines from colorectal cancer (HCT116 and SW948) and pancreatic ductal adenocarcinoma (Panc-1 and MIA-Pa-Ca-2) were used to investigate metabolism in 3D spheroid models. The metabolic variation under normal glucose conditions were investigated comparing 2D and 3D cultures by metabolic flux analysis and expression of key metabolic proteins. RESULTS: We find significant differences in glucose metabolism of 3D cultures compared to 2D cultures, both related to glycolysis and oxidative phosphorylation. Spheroids have higher ATP-linked respiration in standard nutrient conditions and higher non-aerobic ATP production in the absence of supplemented glucose. In addition, ATP-linked respiration is significantly inversely correlated with OCR/ECAR (p = 0.0096). Mitochondrial transport protein, TOMM20, expression decreases in all spheroid models compared to 2D, and monocarboxylate transporter (MCT) expression increases in 3 of the 4 spheroid models. CONCLUSIONS: In this study of CRC and PDAC cell lines, we demonstrate that glucose metabolism in 3D spheroids differs significantly from 2D cultures, both in terms of glycolytic and oxidative phosphorylation metrics. The metabolic phenotype shift from 2D to 3D culture in one cell line is greater than the phenotypic differences between each cell line and tumor source. The results herein emphasize the need to use 3D cell models for investigating nutrient utilization and metabolic flux for a better understanding of tumor metabolism and potential metabolic therapeutic targets.

10.
Cancers (Basel) ; 14(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954433

RESUMO

Glioblastoma (GB) are the most frequent brain cancers. Aggressive growth and limited treatment options induce a median survival of 12-15 months. In addition to highly proliferative and invasive properties, GB cells show cancer-associated metabolic characteristics such as increased aerobic glycolysis. Pyruvate dehydrogenase (PDH) is a key enzyme complex at the crossroads between lactic fermentation and oxidative pathways, finely regulated by PDH kinases (PDHKs). PDHKs are often overexpressed in cancer cells to facilitate high glycolytic flux. We hypothesized that targeting PDHKs, by disturbing cancer metabolic homeostasis, would alter GB progression and render cells vulnerable to additional cancer treatment. Using patient databases, distinct expression patterns of PDHK1 and PDHK2 in GB tissues were obvious. To disturb protumoral glycolysis, we modulated PDH activity through the genetic or pharmacological inhibition of PDHK in patient-derived stem-like spheroids. Striking effects of PDHKs inhibition using dichloroacetate were observed in vitro on cell morphology and metabolism, resulting in increased intracellular ROS levels and decreased proliferation and invasion. In vivo findings confirmed a reduction in tumor size and better survival of mice implanted with PDHK1 and PDHK2 knockout cells. Adding a radiotherapeutic protocol further resulted in a reduction in tumor size and improved mouse survival in our model.

11.
Biochim Biophys Acta ; 1798(1): 1-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19883623

RESUMO

Normal and malignant hematopoiesis are regulated by intercellular communication in the hematopoietic microenvironments, and both soluble mediators as well as direct cell-cell contact play important functional roles. Gap junctions are complex membrane structures that transfer molecules between neighboring cells and thereby alter intracellular signaling and metabolism. The gap junction building blocks, the connexins, are also involved in gap junction-independent intercellular communication by forming hemichannels that transfer substances between the intra- and extracellular spaces. Connexins are furthermore involved in cell regulation as single molecules by modulating intracellular pathways and possibly gene transcription. The role of connexins in leukemogenesis and leukemic cell functions are not well characterized. In this review, we describe the known effects of gap junctions and connexins in acute myelogenous leukemia and the diverse potential of connexins in acute myelogenous leukemia chemosensitivity, intracellular signaling and cell death regulation.


Assuntos
Conexinas/metabolismo , Leucemia Mieloide/metabolismo , Transdução de Sinais , Doença Aguda , Apoptose , Comunicação Celular , Junções Comunicantes/metabolismo , Humanos , Leucemia Mieloide/patologia , Modelos Biológicos
12.
Sci Rep ; 11(1): 10487, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006970

RESUMO

Cancer cells exhibit altered metabolism, a phenomenon described a century ago by Otto Warburg. However, metabolic drug targeting is considered an underutilized and poorly understood area of cancer therapy. Metformin, a metabolic drug commonly used to treat type 2 diabetes, has been associated with lower cancer incidence, although studies are inconclusive concerning effectiveness of the drug in treatment or cancer prevention. The aim of this study was to determine how glucose concentration influences cancer cells' response to metformin, highlighting why metformin studies are inconsistent. We used two colorectal cancer cell lines with different growth rates and clinically achievable metformin concentrations. We found that fast growing SW948 are more glycolytic in terms of metabolism, while the slower growing SW1116 are reliant on mitochondrial respiration. Both cell lines show inhibitory growth after metformin treatment under physiological glucose conditions, but not in high glucose conditions. Furthermore, SW1116 converges with SW948 at a more glycolytic phenotype after metformin treatment. This metabolic shift is supported by changed GLUT1 expression. Thus, cells having different metabolic phenotypes, show a clear differential response to metformin treatment based on glucose concentration. This demonstrates the importance of growth conditions for experiments or clinical studies involving metabolic drugs such as metformin.


Assuntos
Neoplasias Colorretais/patologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Meios de Cultura , Humanos
13.
Cancers (Basel) ; 13(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668151

RESUMO

Increased glycolytic activity is a hallmark of cancer initiation and progression and is often observed in non-small cell lung cancer (NSCLC). Pyruvate dehydrogenase (PDH) complex acts as a gatekeeper between glycolysis and oxidative phosphorylation, and activation of PDH is known to inhibit glycolytic activity. As part of a standard therapeutic regimen, patients with NSCLC harboring oncogenic mutations in the epidermal growth factor receptor (EGFR) are treated with EGFR tyrosine kinase inhibitors (EGFR TKIs). Independent of good initial response, development of resistance to this therapy is inevitable. In the presented work, we propose that inhibition of glycolysis will add to the therapeutic effects and possibly prevent development of resistance against both EGFR TKIs and ionizing radiation in NSCLC. Analysis of transcriptome data from two independent NSCLC patient cohorts identified increased expression of pyruvate dehydrogenase kinase 1 (PDHK1) as well as upregulated expression of genes involved in glucose metabolism in tumors compared to normal tissue. We established in vitro models of development of resistance to EGFR TKIs to study metabolism and determine if targeting PDHK would prevent development of resistance to EGFR TKIs in NSCLC cells. The PDHK1 inhibitor dichloroacetate (DCA) in combination with EGFR TKIs and/or ionizing radiation was shown to increase the therapeutic effect in our NSCLC cell models. This mechanism was associated with redirected metabolism towards pyruvate oxidation and reduced lactate production, both in EGFR TKI sensitive and resistant NSCLC cells. Using DCA, the intracellular pool of pyruvate available for lactic fermentation becomes limited. Consequently, pyruvate is redirected to the mitochondria, and reinforces mitochondrial activity. Addition of DCA to cell culture deacidifies the extracellular microenvironment as less lactate is produced and excreted. In our study, we find that this redirection of metabolism adds to the therapeutic effect of EGFR TKI and ionizing radiation in NSCLC.

14.
PLoS One ; 15(1): e0227384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923274

RESUMO

Chronic cancer-related fatigue (CF) is a common and distressing condition in a subset of cancer survivors and common also after successful treatment of malignant lymphoma. The etiology and pathogenesis of CF is unknown, and lack of biomarkers hampers development of diagnostic tests and successful therapy. Recent studies on the changes of amino acid levels and other metabolites in patients with chronic fatigue syndrome/myalgic encephalopathy (CFS/ME) have pointed to possible central defects in energy metabolism. Here we report a comprehensive analysis of serum concentrations of amino acids, including metabolites of tryptophan, the kynurenine pathway and vitamin B6 in a well characterized national Norwegian cohort of lymphoma survivors after high-dose therapy and autologous stem cell transplantation. Among the 20 standard amino acids in humans, only tryptophan levels were significantly lower in both males and females with CF compared to non-fatigued survivors, a strikingly different pattern than seen in CFS/ME. Markers of tryptophan degradation by the kynurenine pathway (kynurenine/tryptophan ratio) and activation of vitamin B6 catabolism (pyridoxic acid/(pyridoxal + pyridoxal 5'-phosphate), PAr index) differed in survivors with or without CF and correlated with known markers of immune activation and inflammation, such as neopterin, C-reactive protein and Interleukin-6. Among personal traits and clinical findings assessed simultaneously in participating survivors, higher neuroticism score, obesity and higher PAr index were significantly associated with increased risk of CF. Collectively, these data point to low grade immune activation and inflammation as a basis for CF in lymphoma survivors.


Assuntos
Aminoácidos/metabolismo , Síndrome de Fadiga Crônica/etiologia , Linfoma/complicações , Vitamina B 6/metabolismo , Adolescente , Adulto , Idoso , Aminoácidos/sangue , Sobreviventes de Câncer , Criança , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/psicologia , Feminino , Humanos , Inflamação/sangue , Linfoma/metabolismo , Linfoma/psicologia , Linfoma/terapia , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Triptofano/metabolismo , Vitamina B 6/sangue , Adulto Jovem
15.
Metabolism ; 103: 154014, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31751577

RESUMO

BACKGROUND: Inhibition of Irx3 and Irx5 has been shown to reduce body weight and white adipose tissue (WAT) mass through cell-autonomous and sympathetic-induced increases in adipocyte beiging and thermogenesis in mice and humans. However, the underlying mechanisms of the Irx control over beiging are still largely unknown, as illustrated by recent reports showing divergent effects of Irx3 on adipocyte metabolism and function. Here, we investigated the role of Irx3 in controlling beige preadipocyte function and differentiation. METHODS: Stable knock out of Irx3 in ME3 mouse preadipocytes capable of beiging was performed using a CRISPR-Cas9 system, and the effect on cell differentiation was assessed by qPCR, RNA-seq, Oil-red-O lipid staining and Alcian Blue staining of proteoglycans. Changes in cell identities were validated using cell type enrichment analysis from RNA-seq data. Proliferation and cell cycle progression in undifferentiated cells were measured by WST-1 and flow cytometry, reactive oxygen species (ROS) generation was determined by fluorescence spectrometry and mitochondrial respiration was investigated by Seahorse assay. RESULTS: Irx3 was found to be essential for the identity, function and adipogenic differentiation of beige adipocyte precursors. Irx3-KO impaired proliferation, ROS generation and mitochondrial respiration in the preadipocytes. We further observed profound changes in numerous genes during both early and late stages of adipogenic differentiation, including genes important for adipocyte differentiation, cell cycle progression, oxidative phosphorylation (OXPHOS) and morphogenesis. Irx3-KO cells failed to accumulate lipids following adipogenic stimuli, and cell enrichment analysis revealed a loss of preadipocyte identity and a gain of chondrocyte-like identity in Irx3-KO cells during early differentiation. Finally, unlike the control cells, the Irx3-KO cells readily responded to chondrogenic stimuli. CONCLUSIONS: Irx3 is required for preadipocyte identity and differentiation capacity. Our findings suggest that, while inhibition of Irx3 may be beneficial during later developmental stages to modulate adipogenesis in the beige direction, constitutive and complete absence of Irx3 in the embryonic fibroblast stage leads to detrimental loss of adipogenic differentiation capacity.


Assuntos
Adipogenia/genética , Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Adipócitos Bege/fisiologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Fatores de Transcrição/genética
16.
Mitochondrion ; 49: 97-110, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31351920

RESUMO

Fatty acid oxidation is a central fueling pathway for mitochondrial ATP production. Regulation occurs through multiple nutrient- and energy-sensitive molecular mechanisms. We explored if upregulated mRNA expression of the mitochondrial enzyme pyruvate dehydrogenase kinase 4 (PDK4) may be used as a surrogate marker of increased mitochondrial fatty acid oxidation, by indicating an overall shift from glucose to fatty acids as the preferred oxidation fuel. The association between fatty acid oxidation and PDK4 expression was studied in different contexts of metabolic adaption. In rats treated with the modified fatty acid tetradecylthioacetic acid (TTA), Pdk4 was upregulated simultaneously with fatty acid oxidation genes in liver and heart, whereas muscle and white adipose tissue remained unaffected. In MDA-MB-231 cells, fatty acid oxidation increased nearly three-fold upon peroxisome proliferator-activated receptor α (PPARα, PPARA) overexpression, and four-fold upon TTA-treatment. PDK4 expression was highly increased under these conditions. Further, overexpression of PDK4 caused increased fatty acid oxidation in these cells. Pharmacological activators of PPARα and AMPK had minor effects, while the mTOR inhibitor rapamycin potentiated the effect of TTA. There were minor changes in mitochondrial respiration, glycolytic function, and mitochondrial biogenesis under conditions of increased fatty acid oxidation. TTA was found to act as a mild uncoupler, which is likely to contribute to the metabolic effects. Repeated experiments with HeLa cells supported these findings. In summary, PDK4 upregulation implies an overarching metabolic shift towards increased utilization of fatty acids as energy fuel, and thus constitutes a sensitive marker of enhanced fatty acid oxidation.


Assuntos
Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas Mitocondriais/biossíntese , Piruvato Desidrogenase Quinase de Transferência de Acetil/biossíntese , Regulação para Cima , Animais , Biomarcadores/metabolismo , Células HeLa , Humanos , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Sulfetos/toxicidade
17.
Acta Neuropathol Commun ; 7(1): 55, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971321

RESUMO

Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was ß-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that ß-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of ß-sitosterol was linked to mitochondrial interference. Mechanistically, ß-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either ß-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, ß-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Melanoma/genética , Melanoma/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Sitosteroides/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/complicações , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Feminino , Humanos , Melanoma/complicações , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mutação , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma
18.
Sci Rep ; 7(1): 10710, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878349

RESUMO

The cell penetrating peptide, Pep-1, has been shown to facilitate cellular uptake of foreign mitochondria but further research is required to evaluate the use of Pep-1-mediated mitochondrial delivery (PMD) in treating mitochondrial defects. Presently, we sought to determine whether mitochondrial transplantation rescue mitochondrial function in a cybrid cell model of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) disease. Following PMD, recipient cells had internalized donor mitochondria after 1 h, and expressed higher levels of normal mitochondrial DNA, particularly at the end of the treatment and 11 days later. After 4 days, mitochondrial respiratory function had recovered and biogenesis was evident in the Pep-1 and PMD groups, compared to the untreated MELAS group. However, only PMD was able to reverse the fusion-to-fission ratio of mitochondrial morphology, and mitochondria shaping proteins resembled the normal pattern seen in the control group. Cell survival following hydrogen peroxide-induced oxidative stress was also improved in the PMD group. Finally, we observed that PMD partially normalized cytokine expression, including that of interleukin (IL)-7, granulocyte macrophage-colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF), in the MELAS cells. Presently, our data further confirm the protective effects of PMD as well in MELAS disease.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Autofagia , Linhagem Celular Tumoral , Respiração Celular , Sobrevivência Celular , Citocinas/biossíntese , Técnicas de Genotipagem , Humanos , Síndrome MELAS/terapia , Mitocôndrias/transplante , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Coloração e Rotulagem
20.
Neuro Oncol ; 19(3): 383-393, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591677

RESUMO

Background: Invasion and angiogenesis are major hallmarks of glioblastoma (GBM) growth. While invasive tumor cells grow adjacent to blood vessels in normal brain tissue, tumor cells within neovascularized regions exhibit hypoxic stress and promote angiogenesis. The distinct microenvironments likely differentially affect metabolic processes within the tumor cells. Methods: In the present study, we analyzed gene expression and metabolic changes in a human GBM xenograft model that displayed invasive and angiogenic phenotypes. In addition, we used glioma patient biopsies to confirm the results from the xenograft model. Results: We demonstrate that the angiogenic switch in our xenograft model is linked to a proneural-to-mesenchymal transition that is associated with upregulation of the transcription factors BHLHE40, CEBPB, and STAT3. Metabolic analyses revealed that angiogenic xenografts employed higher rates of glycolysis compared with invasive xenografts. Likewise, patient biopsies exhibited higher expression of the glycolytic enzyme lactate dehydrogenase A and glucose transporter 1 in hypoxic areas compared with the invasive edge and lower-grade tumors. Analysis of the mitochondrial respiratory chain showed reduction of complex I in angiogenic xenografts and hypoxic regions of GBM samples compared with invasive xenografts, nonhypoxic GBM regions, and lower-grade tumors. In vitro hypoxia experiments additionally revealed metabolic adaptation of invasive tumor cells, which increased lactate production under long-term hypoxia. Conclusions: The use of glycolysis versus mitochondrial respiration for energy production within human GBM tumors is highly dependent on the specific microenvironment. The metabolic adaptability of GBM cells highlights the difficulty of targeting one specific metabolic pathway for effective therapeutic intervention.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Neovascularização Patológica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/patologia , Glicólise , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Ratos , Ratos Nus , Ativação Transcricional , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa