Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 24(4): 177-189, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36704929

RESUMO

The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.


Assuntos
Autofagia , Endossomos , Endossomos/metabolismo , Lisossomos/metabolismo , Células Epiteliais , Pigmentos da Retina/metabolismo
2.
Exp Eye Res ; 232: 109517, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211287

RESUMO

The cysteinyl leukotrienes (CysLTs) have important functions in the regulation of inflammation and cellular stress. Blocking the CysLT receptors (CysLTRs) with specific antagonists is beneficial against progression of retinopathies (e.g. diabetic retinopathy, wet AMD). However, the exact cellular localization of the CysLTRs and their endogenous ligands in the eye have not been elucidated in detail yet. It is also not known whether the expression patterns differ between humans and animal models. Therefore, the present study aimed to describe and compare the distribution of two important enzymes in CysLT biosynthesis, 5-lipoxygenase (5-LOX) and 5-lipoxygenase-activating protein (FLAP), and of CysLTR1 and CysLTR2 in healthy human, rat and mouse eyes. Human donor eyes (n = 10) and eyes from adult Sprague Dawley rats (n = 5) and CD1 mice (n = 8) of both sexes were collected. The eyes were fixed in 4% paraformaldehyde and cross-sections were investigated by immunofluorescence with specific antibodies against 5-LOX, FLAP (human tissue only), CysLTR1 and CysLTR2. Flat-mounts of the human choroid were prepared and processed similarly. Expression patterns were assessed and semiquantitatively evaluated using a confocal fluorescence microscope (LSM710, Zeiss). We observed so far unreported expression sites for CysLT system components in various ocular tissues. Overall, we detected expression of 5-LOX, CysLTR1 and CysLTR2 in the human, rat and mouse cornea, conjunctiva, iris, lens, ciliary body, retina and choroid. Importantly, expression profiles of CysLTR1 and CysLTR2 were highly similar between human and rodent eyes. FLAP was expressed in all human ocular tissues except the lens. Largely weak immunoreactivity of FLAP and 5-LOX was observed in a few, yet unidentified, cells of diverse ocular tissues, indicating low levels of CysLT biosynthesis in healthy eyes. CysLTR1 was predominantly detected in ocular epithelial cells, supporting the involvement of CysLTR1 in stress and immune responses. CysLTR2 was predominantly expressed in neuronal structures, suggesting neuromodulatory roles of CysLTR2 in the eye and revealing disparate functions of CysLTRs in ocular tissues. Taken together, we provide a comprehensive protein expression atlas of CysLT system components in the human and rodent eye. While the current study is purely descriptive and therefore does not allow significant functional conclusions yet, it represents an important basis for future studies in diseased ocular tissues in which distribution patterns or expression levels of the CysLT system might be altered. Furthermore, this is the first comprehensive study to elucidate expression patterns of CysLT system components in human and animal models that will help to identify and understand functions of the system as well as mechanisms of action of potential CysLTR ligands in the eye.


Assuntos
Inflamação , Leucotrienos , Masculino , Adulto , Feminino , Humanos , Ratos , Camundongos , Animais , Ligantes , Ratos Sprague-Dawley , Leucotrienos/farmacologia
3.
Mol Ther ; 30(2): 855-867, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547467

RESUMO

Cell-penetrating peptides (CPPs) hold great promise for intracellular delivery of therapeutic proteins. However, endosomal entrapment of transduced cargo is a major bottleneck hampering their successful application. While developing a transducible zinc finger protein-based artificial transcription factor targeting the expression of endothelin receptor A, we identified interaction between the CPP and the endosomal membrane or endosomal entanglement as a main culprit for endosomal entrapment. To achieve endosomal disentanglement, we utilized endosome-resident proteases to sever the artificial transcription factor from its CPP upon arrival inside the endosome. Using this approach, we greatly enhanced the correct subcellular localization of the disentangled artificial transcription factor, significantly increasing its biological activity and distribution in vivo. With rational engineering of proteolytic sensitivity, we propose a new design principle for transducible therapeutic proteins, helping CPPs attain their full potential as delivery vectors for therapeutic proteins.


Assuntos
Peptídeos Penetradores de Células , Receptores de Endotelina , Peptídeos Penetradores de Células/metabolismo , Endossomos/metabolismo , Receptores de Endotelina/metabolismo , Fatores de Transcrição/metabolismo
4.
Exp Eye Res ; 213: 108806, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715090

RESUMO

Glaucoma is the second leading cause of blindness worldwide. This multifactorial, neurodegenerative group of diseases is characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, leading to irreversible visual impairment and blindness. There is a huge unmet and urging need for the development of new and translatable strategies and treatment options to prevent this progressive loss of RGC. Accumulating evidence points towards a critical role of neuroinflammation, in particular microglial cells, in the pathogenesis of glaucoma. Leukotrienes are mediators of neuroinflammation and are involved in many neurodegenerative diseases. Therefore, we tested the leukotriene receptors CysLT1R/GPR17-selective antagonist Montelukast (MTK) for its efficacy to modulate the reactive state of microglia in order to ameliorate RGCs loss in experimental glaucoma. Ocular hypertension (OHT) was induced unilaterally by injection of 8 µm magnetic microbead (MB) into the anterior chamber of female Brown Norway rats. The contralateral, untreated eye served as control. Successful induction of OHT was verified by daily IOP measurement using a TonoLab rebound tonometer. Simultaneously to OHT induction, one group received daily MTK treatment and the control group vehicle solution by oral gavage. Animals were sacrificed 13-15 days after MB injection. Retina and optic nerves (ON) of OHT and contralateral eyes were analyzed by immunofluorescence with specific markers for RGCs (Brn3a), microglial cells/macrophages (Iba1 and CD68), and cysteinyl leukotriene pathway receptors (CysLT1R and GPR17). Protein labeling was documented by confocal microscopy and analyzed with ImageJ plugins. Further, mRNA expression of genes of the inflammatory and leukotriene pathway was analyzed in retinal tissue. MTK treatment resulted in a short-term IOP reduction at day 2, which dissipated by day 5 of OHT induction in MTK treated animals. Furthermore, MTK treatment resulted in a decreased activation of Iba1+ microglial cells in the retina and ON, and in a significantly increased RGC survival in OHT eyes. Within the retina, GPR17 and CysLT1R expression was demonstrated in single RCGs and in microglial cells respectively. Further, increased mRNA expression of pro-inflammatory genes was detected in OHT induced retinas. In the ON, OHT induction increased the number of GPR17+ cells, showing a trend of reduction following MTK treatment. This study shows for the first time a significantly increased RGC survival in an acute OHT model following treatment with the leukotriene receptor antagonist MTK. These results strongly suggest a neuroprotective effect of MTK and a potential new therapeutic strategy for glaucoma treatment.


Assuntos
Antagonistas de Leucotrienos/uso terapêutico , Microglia/metabolismo , Hipertensão Ocular/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Leucotrienos/metabolismo , Células Ganglionares da Retina/fisiologia , Acetatos/uso terapêutico , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular/fisiologia , Ciclopropanos/uso terapêutico , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Regulação da Expressão Gênica/fisiologia , Pressão Intraocular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Hipertensão Ocular/fisiopatologia , Quinolinas/uso terapêutico , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos BN , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Retina/fisiopatologia , Sulfetos/uso terapêutico , Tonometria Ocular , Fator de Transcrição Brn-3B/metabolismo
5.
Adv Exp Med Biol ; 1122: 1-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937860

RESUMO

Pericytes (PCs) are specialized cells located abluminal of endothelial cells (ECs) on capillaries, embedded within the same basement membrane. They are essential regulators of vascular development, remodeling, and blood-retina-barrier (BRB) tightness and are therefore important components to maintain tissue homeostasis. The perivascular localization and expression of contractile proteins suggest that PCs participate in capillary blood flow regulation and neurovascular coupling. Due to their ability to differentiate into various cell types in vitro, they are regarded as potential cells for tissue repair and therapeutic approaches in regenerative medicine. Altered function or loss of PCs is associated with a multitude of CNS diseases, including diabetic retinopathy (DR). In this chapter, we will provide a short overview of retinal vascular development, the origin of PCs, and focus on PCs in retinopathy of prematurity (ROP) and in the diabetic retina. Further, animal models to study the fate of PCs and the potential role of (retinal) PCs in regeneration and wound healing will be discussed.


Assuntos
Pericitos/citologia , Retina/citologia , Animais , Barreira Hematorretiniana , Capilares/citologia , Retinopatia Diabética/patologia , Humanos , Regeneração , Retinopatia da Prematuridade/patologia , Cicatrização
6.
Exp Physiol ; 102(6): 650-662, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28370799

RESUMO

NEW FINDINGS: What is the central question of this study? Knockdown of UCP2 reduces mitochondrial Ca2+ uptake. This suggests that Ucp2 knockout mice need to have additional effects on cytosolic Ca2+ handling to prevent Ca2+ overload. However, the specific mechanisms and their impact on cardiac electrophysiology remain speculative. What is the main finding and its importance? In Ucp2 knockout mice, decreased mitochondrial Ca2+ uptake is compensated for by functional inhibition of L-type Ca2+ channels and resultant shortening of action potential duration. UCP2-dependent modulations have a major impact on cardiac electrophysiology, resulting in alterations of ECG characteristics and a higher susceptibility to Ca2+ -mediated ventricular arrhythmias. Uncoupling protein 2 (mitochondrial, proton carrier) (UCP2) belongs to a superfamily of mitochondrial ion transporters. Owing to its beneficial influence on production of reactive oxygen species, it is suggested to reduce cardiac ischaemia-reperfusion injury. Recent studies have uncovered its ability to regulate mitochondrial Ca2+ uptake and therefore to influence cardiac cytosolic Ca2+ handling, indicating compensatory pathways to avoid toxic Ca2+ overload in Ucp2 knockout (Ucp2-/- ) mice. However, the specific mechanisms and their impact on cardiac electrophysiology remain speculative. Molecular analyses, whole-cell patch clamp in cardiomyocytes and ECG studies were performed in Ucp2-/- and wild-type (WT) control mice. Furthermore, to explore the impact on cardiac arrhythmogenicity, ECG monitoring was performed in basal conditions and during Ca2+ -mediated stress using Bay K 8644. Although cardiac ryanodine receptor 2, NCX1, L-type Ca2+ channel (LTCC) and SERCA2a expression were not altered, Ucp2-/- mice revealed major variations in cardiac electrophysiology. The LTCC current and APD90 were decreased in Ucp2-/- mice, indicating compensatory mechanisms. Furthermore, in Ucp2-/- mice, an increased slope factor of action potential upstrokes and more hyperpolarized resting membrane potential were measured, suggesting variations in cardiac excitability. In agreement with alterations of cellular physiology in Ucp2-/- mice, reductions in PR and QRS as well as shortening of the QTc interval were noted in ECG recordings. Importantly, an increased incidence of cellular after-depolarizations and more pronounced susceptibility to Ca2+ -mediated arrhythmias were observed. Furthermore, although expression of UCP3 was not different, levels of PRMT1 were significantly higher in Ucp2-/- mice. Our observations indicate compensatory mechanisms by which Ucp2-/- mice prevent toxic cytosolic Ca2+ overload. UCP2-dependent modulations have a major impact on cardiac electrophysiology and influence susceptibility to Ca2+ -mediated ventricular arrhythmias.


Assuntos
Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Citosol/metabolismo , Eletrofisiologia/métodos , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo
7.
Exp Eye Res ; 147: 20-30, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27107794

RESUMO

Aquaporins (AQPs) are important for ocular homeostasis and function. While AQP expression has been investigated in ocular tissues of human, mouse, rat and dog, comprehensive data in rabbits are missing. As rabbits are frequently used model organisms in ophthalmic research, the aim of this study was to analyze mRNA expression and to localize AQPs in the rabbit eye. The results were compared with the data published for other species. In cross sections of New Zealand White rabbit eyes AQP0 to AQP5 were labeled by immunohistology and analyzed by confocal microscopy. Immunohistological findings were compared to mRNA expression levels, which were analyzed by quantitative reverse transcription real time polymerase chain reaction (qRT-PCR). The primers used were homologous against conserved regions of AQPs. In the rabbit eye, AQP0 protein expression was restricted to the lens, while AQP1 was present in the cornea, the chamber angle, the iris, the ciliary body, the retina and, to a lower extent, in optic nerve vessels. AQP3 and AQP5 showed immunopositivity in the cornea. AQP3 was also present in the conjunctiva, which could not be confirmed for AQP5. However, at a low level AQP5 was also traceable in the lens. AQP4 protein was detected in the ciliary non-pigmented epithelium (NPE), the retina, optic nerve astrocytes and extraocular muscle fibers. For most tissues the qRT-PCR data confirmed the immunohistology results and vice versa. Although species differences exist, the AQP protein expression pattern in the rabbit eye shows that, especially in the anterior section, the AQP distribution is very similar to human, mouse, rat and dog. Depending on the ocular regions investigated in rabbit, different protein and mRNA expression results were obtained. This might be caused by complex gene regulatory mechanisms, post-translational protein modifications or technical limitations. However, in conclusion the data suggest that the rabbit is a useful in-vivo model to study AQP function and the effects of direct and indirect intervention strategies to investigate e. g. mechanisms for intraocular pressure modulation or cornea transparency regulation.


Assuntos
Aquaporinas/metabolismo , Olho/metabolismo , Animais , Imuno-Histoquímica , Cristalino/metabolismo , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Histochem Cell Biol ; 143(4): 411-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25371325

RESUMO

Tendons lack sufficient blood supply and represent a bradytroph tissue with prolonged healing time under pathological conditions. While the role of lymphatics in wound/defect healing in tissues with regular blood supply is well investigated, its involvement in tendon defects is not clear. We here try to identify the role of the lymphatic system in a tendon lesion model with morphological methods. A rat Achilles tendon lesion model (n = 5) was created via surgical intervention. Two weeks after surgery, animals were killed and lesioned site removed and prepared for polarization microscopy (picrosirius red) and immunohistochemistry using the lymphatic markers PROX1, VEGFR3, CCL21, LYVE-1, PDPN, and the vascular marker CD31. Additionally, DAPI was applied. Untreated tendons served as controls, confocal laser-scanning microscopy was used for documentation. At the lesion site, polarization microscopy revealed a structural reintegration while immunohistochemistry detected band-like profiles immunoreactive for PDPN, VEGFR3, CCL21, LYVE1, and CD31, surrounding DAPI-positive nuclei. PROX1-positive nuclei were detected within the lesion forming lines and opposed to each other. These PROX1-positive nuclei were surrounded by LYVE-1- or VEGFR3-positive surfaces. Few CD31-positive profiles contained PROX1-positive nuclei, while the majority of CD31-positive profiles lacked PROX1-positive nuclei. VEGFR3-, PDPN-, and LYVE-1-positive profiles were numerous within the lesion site, but absent in control tissue. Within 2 weeks, a structural rearrangement takes place in this lesion model, with dense lymphatic supply. The role of lymphatics in tendon wound healing is unclear, and proposed model represents a good possibility to study healing dynamics and lymphangiogenesis in a tissue almost completely lacking lymphatics in physiological conditions.


Assuntos
Tendão do Calcâneo/patologia , Linfangiogênese , Vasos Linfáticos/patologia , Traumatismos dos Tendões/patologia , Cicatrização , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/cirurgia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Vasos Linfáticos/metabolismo , Microscopia Confocal , Microscopia de Polarização , Ratos Endogâmicos Lew , Traumatismos dos Tendões/metabolismo , Fatores de Tempo
9.
Exp Eye Res ; 138: 42-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122049

RESUMO

The neuropeptide galanin (GAL) is widely distributed within intrinsic and extrinsic sources supplying the eye. It is involved in regulation of the vascular tone, thus important for ocular homeostasis. Since the presence/distribution of its receptors is unknown, we here screen for the presence of the various GAL receptors in the human eye. Meeting the Helsinki-Declaration, human eyes (n = 6; 45-83 years of age, of both sex, post mortem time 10-19 h) were obtained from the cornea bank and prepared for immunohistochemistry against GAL receptors 1-3 (GALR1-GALR3). Over-expressing cell assays served as positive controls and confocal laser-scanning microscopy was used for documentation. Cell assays reliably detected immunoreactivity for GALR1-3 and cross-reactions between antibodies used were not observed. In the cornea, GALR1-3 were detected in basal layers of the epithelium, stroma, endothelium, as well as in adjacent conjunctiva. In the iris, GALR1-3 were detected in iris sphincter and dilator, while iris vessels displayed immunoreactivity for GALR1 and GALR3. In the ciliary body, GALR1 was exclusively found in the non-pigmented epithelium while GALR3 was detected in the ciliary muscle and vessels. In the retina, GALR1 was present in fibers of the IPL, OPL, NFL, many cells of the INL and few cells of the ONL. GALR2 and GALR3 were present in few neurons of the INL, while GALR2 was also found surrounding retinal vessels. RPE displayed weak immunoreactivity for GALR2 but intense immunoreactivity for GALR3. In the choroid, GALR1-3 were detectable in intrinsic choroidal neurons and nerve fibers of the choroidal stroma, and all three receptors were detected surrounding choroidal blood vessels, while the choriocapillaris was immunoreactive for GALR3 only. This is the first report of the various GALRs in the human eye. While the presence of GALRs in cornea and conjunctiva might be relevant for wound healing or inflammatory processes, the detection in iris vessels (GALR1, 2) and choroidal vessels (GALR1-3) highlights the role of GAL in vessel dynamics. Presence of GALR1 in ciliary body epithelium and GALR3 in ciliary vessels indicates involvement in aqueous humor production, whereas retinal GALR distribution might contribute to signal transduction.


Assuntos
Vasos Sanguíneos/metabolismo , Corioide/irrigação sanguínea , Olho/metabolismo , Iris/irrigação sanguínea , Receptores de Galanina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular , Corpo Ciliar/metabolismo , Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Músculo Liso/metabolismo , Retina/metabolismo
10.
Exp Eye Res ; 131: 63-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497346

RESUMO

Extrinsic and intrinsic sources of the autonomic nervous system contribute to choroidal innervation, thus being responsible for the control of choroidal blood flow, aqueous humor production or intraocular pressure. Neuropeptides are involved in this autonomic control, and amongst those, alarin has been recently introduced. While alarin is present in intrinsic choroidal neurons, it is not clear if these are the only source of neuronal alarin in the choroid. Therefore, we here screened for the presence of alarin in human cranial autonomic ganglia, and also in rat, a species lacking intrinsic choroidal innervation. Cranial autonomic ganglia (i.e., ciliary, CIL; pterygopalatine, PPG; superior cervical, SCG; trigeminal ganglion, TRI) of human and rat were prepared for immunohistochemistry against murine and human alarin, respectively. Additionally, double staining experiments for alarin and choline acetyltransferase (ChAT), tyrosine hydroxilase (TH), substance P (SP) were performed in human and rat ganglia for unequivocal identification of ganglia. For documentation, confocal laser scanning microscopy was used, while quantitative RT-PCR was applied to confirm immunohistochemical data and to detect alarin mRNA expression. In humans, alarin-like immunoreactivity (alarin-LI) was detected in intrinsic neurons and nerve fibers of the choroidal stroma, but was lacking in CIL, PPG, SCG and TRI. In rat, alarin-LI was detected in only a minority of cranial autonomic ganglia (CIL: 3.5%; PPG: 0.4%; SCG: 1.9%; TRI: 1%). qRT-PCR confirmed the low expression level of alarin mRNA in rat ganglia. Since alarin-LI was absent in human cranial autonomic ganglia, and only present in few neurons of rat cranial autonomic ganglia, we consider it of low impact in extrinsic ocular innervation in those species. Nevertheless, it seems important for intrinsic choroidal innervation in humans, where it could serve as intrinsic choroidal marker.


Assuntos
Corioide/lesões , Peptídeo Semelhante a Galanina/análise , Gânglios Autônomos/química , RNA Mensageiro/análise , Idoso , Animais , Feminino , Peptídeo Semelhante a Galanina/genética , Gânglios Autônomos/citologia , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Ratos , Reação em Cadeia da Polimerase em Tempo Real
11.
Optom Vis Sci ; 92(4 Suppl 1): S40-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25756341

RESUMO

PURPOSE: Hereditary hyperferritinemia cataract syndrome (HHCS) is a rare autosomal dominant hereditary disease, characterized by hyperferritinemia but with absence of body iron excess and early onset of bilateral cataracts. Although 5- to 20-fold increased serum ferritin concentrations have been reported in HHCS patients, data of ferritin levels in aqueous humor have not been obtained. We therefore aimed to investigate the ferritin levels in aqueous humor and serum and further present histological and ultrastructural data of the lens. METHODS: During cataract extraction and intraocular lens implantation, aqueous humor and lens aspirate of a 37-year-old HHCS patient were obtained from both eyes. Ferritin levels in serum and aqueous humor were quantitatively analyzed via immunoassays in the HHCS patient and healthy control subjects (n = 6). Lens aspirate in HHCS was analyzed histologically and at the ultrastructural level. Further, genetic mutation screening by polymerase chain reaction and DNA sequencing in blood was performed. RESULTS: Serum ferritin levels in the control group were 142.2 ± 38.7 µg/L, whereas in the HHCS patient, this parameter was excessively increased (1086 µg/L). Analysis of ferritin in aqueous humor revealed 6.4 ± 3.8 µg/L in normal control subjects and 146.3 µg/L (OD) and 160.4 µg/L (OS) in the HHCS patient. DNA analysis detected a C>A mutation on position +18, a T>G mutation on position +22, a T>C mutation on position +24, and a T>G polymorphism on position +26 in the iron-responsive element of the light-chain ferritin (L-ferritin) gene. CONCLUSIONS: In the HHCS patient, a 23-fold (OD) to 25-fold (OS) increased aqueous humor ferritin level was detected. Therefore, the formation of bilateral cataract in HHCS is most likely a result of elevated aqueous humor ferritin. In addition, a novel mutation in this rare disease in the iron-responsive element of L-ferritin gene is reported.


Assuntos
Humor Aquoso/metabolismo , Catarata/congênito , Ferritinas/sangue , Distúrbios do Metabolismo do Ferro/congênito , Adulto , Catarata/metabolismo , Análise Mutacional de DNA , Ferritinas/genética , Humanos , Imunoensaio , Distúrbios do Metabolismo do Ferro/metabolismo , Implante de Lente Intraocular , Cristalino/patologia , Masculino , Mutação , Facoemulsificação , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
12.
J Dtsch Dermatol Ges ; 13(12): 1257-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26612796

RESUMO

BACKGROUND: A genetic blistering skin disease, recessive dystrophic epidermolysis bullosa (RDEB), is marked by severe wound healing defects and finger contractures. The purpose of this investigation was to elucidate the mechanisms of impaired wound healing and pseudosyndactyly occurring in RDEB patients by studying the role of known inflammation and fibrosis markers in RDEB pseudosyndactyly tissue. PATIENTS AND METHODS: We studied the expression of the fibrosis and/or inflammation markers tenascin-C, α-smooth muscle actin, transforming growth factor-ß1, interleukin-1ß, and interleukin-6 in scarring and nonscarring tissue from healthy donors and RDEB patients by semiquantitative real time-PCR and, where applicable, by immunoblots. Furthermore, the distribution pattern of α-smooth muscle actin and tenascin-C were assessed by immunofluorescence microscopy. RESULTS: Based on mRNA and protein analysis, we found upregulation of tenascin-C, interleukin-1ß, and interleukin-6 - but not of transforming growth factor-ß1 - in recessive dystrophic epidermolysis bullosa scar samples taken from pseudosyndactyly hands. Unexpectedly, α-smooth muscle actin was not upregulated. CONCLUSIONS: Our results confirm inflammation and fibrosis in recessive dystrophic epidermolysis bullosa, especially in scars, suggesting major roles for these processes in pseudosyndactyly. Our data therefore suggests the potential use of antiinflammatory and antifibrotic drugs in the prevention of pseudosyndactyly.


Assuntos
Dermatite/imunologia , Epidermólise Bolhosa Distrófica/imunologia , Deformidades Adquiridas da Mão/imunologia , Pele/imunologia , Pele/patologia , Cicatrização/imunologia , Adolescente , Adulto , Idoso , Citocinas/imunologia , Dermatite/patologia , Epidermólise Bolhosa Distrófica/patologia , Feminino , Fibrose/imunologia , Fibrose/patologia , Humanos , Fatores Imunológicos/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Cell Tissue Res ; 356(1): 1-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337689

RESUMO

Pericytes are contractile cells that surround blood vessels. When contracting, they change the diameter of the vessel and therefore influence blood flow homeostasis; however, mechanisms controlling pericyte action are less well understood. Since blood flow regulation per se is controlled by the autonomic nervous system, the latter might also be involved in pericyte action. Hence, rat choroidal pericytes were analyzed for such a connection by using appropriate markers. Rat choroidal wholemounts and sections were prepared for immunohistochemistry of the pericyte marker chondroitin-sulfate-proteoglycan (NG2) and the pan-neuronal marker PGP9.5 or of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP) and choline acetyl transferase (ChAT). Additionally, PGP9.5 and TH were analyzed in the choroid of DCX-dsRed2 transgenic rats, displaying red-fluorescent perivascular cells and serving as a putative model for studying pericyte function in vivo. Confocal laser-scanning microscopy revealed NG2-immunoreactive cells and processes surrounding the blood vessels. These NG2-positive cells were not co-localized with PGP9.5 but received close appositions of PGP9.5-, TH-, VIP- and ChAT-immunoreactive boutons and fibers. In the DCX-dsRed2 transgenic rat, PGP9.5 and TH were also densely apposed on the dsRed-positive cells adjacent to blood vessels. These cells were likewise immunoreactive for NG2, suggesting their pericyte identity. In addition to the innervation of vascular smooth muscle cells, the close relationship of PGP9.5 and further sympathetic (TH) and parasympathetic (VIP, ChAT) nerve fibers on NG2-positive pericytes indicated an additional target of the autonomic nervous system for choroidal blood flow regulation. Similar findings in the DCX-dsRed transgenic rat indicate the potential use of this animal model for in vivo experiments revealing the role of pericytes in blood flow regulation.


Assuntos
Sistema Nervoso Autônomo/citologia , Corioide/citologia , Pericitos/citologia , Animais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Transgênicos
15.
Acta Ophthalmol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477813

RESUMO

PURPOSE: To investigate the surgical success and efficacy of XEN45 implantation (XEN45 µm, AbbVie Inc., USA) with and without combined cataract surgery up to the first 5 years. METHODS: In a prospective observational monocentric trial, 192 eyes of 157 patients with open-angle glaucoma received either XEN45 implants only (solo surgery group) or combined surgery/cataract surgeries (combined surgery group). Surgical success (qualified and full success; IOP-limit: ≤12, 15, 18, 21 mmHg), time to secondary IOP-lowering procedure, IOP and number of IOP-lowering medications were analysed for 1, 2, 3, 4 and 5 years. RESULTS: Compared to baseline, IOP (24.1 ± 8.1 to 12.6 ± 2.8 mmHg, -48%, p < 0.001) and the number of IOP-lowering medications (3.0 ± 1.0 to 1.5 ± 1.2, -50%, p < 0.001) decreased significantly at 5 years. Although no differences between IOP and the number of IOP-lowering medication courses between the groups were detected at 5 years (p > 0.11), the combined procedure (63%, 37%) showed better success rates compared to the solo procedure (36%, 13%) in the definition IOP ≤18 and ≤12 mmHg (p = 0.035, 0.028). Solo XEN45 procedures had a higher rate of secondary IOP-lowering procedures compared to combined XEN45 cataract procedures (hazard ratio: 2.02, 95%CI: 1.03-3.97, p = 0.04). Twenty per cent of the eyes, including both procedures, required a secondary IOP-lowering procedure within 5 years. CONCLUSIONS: The XEN45 implant is effective in lowering IOP and the number of IOP-lowering medications in patients with open-angle glaucoma in the mid-term. Comparing XEN45 implant results with the results of trabeculectomy available in current literature, we speculate that there might be a higher surgical success rate without medications in favour of trabeculectomy.

16.
Exp Dermatol ; 22(4): 292-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23528216

RESUMO

An important characteristic of epidermolysis bullosa simplex Dowling-Meara (EBS-DM) keratinocytes is the increased level of Jun N-terminal kinase (JNK) stress signalling, which is thought to contribute to the disease phenotype. In this work, we report on the dramatic up-regulation of cytokeratin 14 (K14) in the EBS-DM model cell line KEB7 at both the transcriptional and translational levels, which is noteworthy because KEB7 patient cells are heterozygous for a missense mutation (R125P) in K14. By performing functional assays, we show a direct link between overexpressed wild-type K14 and increased JNK signalling in healthy, immortalized keratinocytes. This observation led us to hypothesize a positive feedback model in which mutant (R125P) K14 triggers JNK signalling, leading to increased AP1-dependent expression of K14, which in turn amplifies JNK signalling further. We therefore suggest that an imbalance of cytoplasmic K14 monomers and K14 incorporated into the intermediate filament (IF) network leads to elevated stress signalling, potentially altering IF dynamics by phosphorylation, which as a side effect, weakens EBS-DM keratinocytes.


Assuntos
Epidermólise Bolhosa Simples/metabolismo , Queratina-14/metabolismo , Linhagem Celular , Epidermólise Bolhosa Simples/genética , Humanos , Filamentos Intermediários/metabolismo , Queratina-14/genética , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Estresse Fisiológico , Fator de Transcrição AP-1/metabolismo
17.
Exp Eye Res ; 106: 74-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23178871

RESUMO

Alarin is a recently discovered regulatory peptide with vasoconstrictive properties in murine skin. Control of vasoconstriction/-relaxation is essential for ocular blood flow and hence the eye's homeostasis, and regulatory peptides are involved in regulation of ocular blood flow. Here we describe the existence and distribution of alarin in the eye of human and potential experimental animals (rat, mouse). Eyes of rat, mouse, and human were prepared for immunohistochemistry against murine and human alarin, respectively. Additionally, double staining experiments for alarin and CD31 were performed in human choroidal flat-mount preparations. For documentation, confocal laser scanning microscopy was used while quantitative real-time-PCR was applied to confirm immunohistochemical data and to detect alarin mRNA expression in human retina and choroid. Alarin-like immunoreactivity (alarin-LI) was detected in corneal epi- and endothelium of human, mouse, and rat, as well as in the conjunctiva of mouse and rat. Alarin-LI was found in the iris of all the species investigated and, in humans, was concentrated around blood vessels. All three species showed distinctive alarin-LI in the non-pigmented epithelium of the ciliary body. In the retina of mouse and rat, maximum signals were detected in the outer nuclear and ganglion cell layer, whereas in humans a strong alarin-LI was found around retinal blood vessels and in intrinsic choroidal neurons (ICN). Quantitative RT-PCR in human confirmed alarin mRNA expression retina and choroid. The existence of alarin in cornea and conjunctiva might indicate a role in immune defense, while its presence in the non-pigmented ciliary epithelium favors an involvement in aqueous humor production. Alarin around blood vessels/in ICN might indicate an involvement in ocular blood flow regulation. Since alarin is found widely distributed in the eyes of species investigated, we were able to establish the basis for further functional experiments.


Assuntos
Olho/metabolismo , Peptídeo Semelhante a Galanina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Vasos Sanguíneos/metabolismo , Células Epiteliais/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Peptídeo Semelhante a Galanina/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neurônios/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos BN , Reação em Cadeia da Polimerase em Tempo Real
18.
Br J Ophthalmol ; 107(8): 1209-1215, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-34933896

RESUMO

BACKGROUND: The choroid is densely innervated by all parts of the autonomic nervous system and further harbours a network of local nerve cells, the intrinsic choroidal neurons (ICN). Their function in ocular control is currently unknown. While morphological data assume a role in intraocular pressure regulation, we here test if increased pressure on isolated choroids may activate ICN. METHODS: Donor tissue was transferred into a pressurisable tissue culture chamber, and nasal and temporal choroid halves incubated for 1 or 4 hours, with pressures set to 15 or 50 mm Hg, followed by qRT-PCR expression analysis of the ICN-specific markers VIP, UCN, NOS1, UCH-L1. POL2-normalised data in the different pressure settings, incubation times and localisations were statistically analysed. RESULTS: The presence of the ICN-specific markers VIP, UCN, NOS1, UCH-L1 was confirmed using immunohistochemistry, and mRNA of all markers was detected in all experimental conditions. Marker analysis revealed no significant changes of mRNA expression levels between 15 and 50 mm Hg in the different incubation times. When comparing all samples over all experimental conditions, a significant increase of VIP and NOS1 mRNA was detected in temporal versus nasal choroids. CONCLUSION: In this functional analysis of human ICN in vitro, higher amounts of VIP and NOS1 mRNA were detected in the temporal choroid, that is, the choroidal site with ICN accumulation. Further, our data indicate that elevated pressure is apparently not able to trigger ICN responses via the investigated markers. Alternative markers and stimuli need to be investigated in upcoming studies in order to unravel ICN function.


Assuntos
Corioide , Neurônios , Humanos , Neurônios/metabolismo , Imuno-Histoquímica , RNA Mensageiro/genética
19.
Br J Ophthalmol ; 107(10): 1575-1582, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35217514

RESUMO

BACKGROUND: Choroidal vascular regulation is mediated by the autonomic nervous system in order to gain proper blood flow control. While the mechanisms behind this control are unknown, neuroregulatory peptides are involved in this process. To better understand choroidal function, we investigate the presence of urocortin-1 (UCN), a neuroregulatory peptide with vascular effects, in the human choroid and its possible intrinsic and extrinsic origin. METHODS: Human choroid and eye-related cranial ganglia (superior cervical ganglion- SCG, ciliary ganglion-CIL, pterygopalatine ganglion-PPG, trigeminal ganglion-TRI) were prepared for immunohistochemistry against UCN, protein-gene product 9.5 (PGP9.5), substance P (SP), tyrosine hydroxylase (TH) and vesicular acetylcholine transporter (VAChT). For documentation, confocal laser scanning microscopy was used. RESULTS: In choroidal stroma, UCN-immunoreactivity was present in nerve fibres, small cells and intrinsic choroidal neurons (ICN). Some UCN+ nerve fibres colocalised for VAChT, while others were VAChT. A similar situation was found with SP: some UCN+ nerve fibres showed colocalisation for SP, while others lacked SP. Colocalisation for UCN and TH was not observed. In eye-related cranial ganglia, only few cells in the SCG, PPG and TRI were UCN+, while many cells of the CIL displayed weak UCN immunoreactivity. CONCLUSION: UCN is part of the choroidal innervation. UCN+/VAChT+ fibres could derive from the few cells of the PPG or cells of the CIL, if these indeed supply the choroid. UCN+/SP+ fibres might originate from ICN, or the few UCN+ cells detected in the TRI. Further studies are necessary to establish UCN function in the choroid and its implication for choroidal autonomic control.


Assuntos
Fibras Nervosas , Urocortinas , Humanos , Urocortinas/análise , Corioide , Neurônios/química , Neurônios/fisiologia , Imuno-Histoquímica , Substância P
20.
Sci Rep ; 13(1): 13239, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580467

RESUMO

The endosomal-lysosomal system (ELS), which carries out cellular processes such as cellular waste degradation via autophagy, is essential for cell homeostasis. ELS inefficiency leads to augmented levels of damaged organelles and intracellular deposits. Consequently, the modulation of autophagic flux has been recognized as target to remove damaging cell waste. Recently, we showed that cysteinyl leukotriene receptor 1 (CysLTR1) antagonist application increases the autophagic flux in the retinal pigment epithelial cell line ARPE-19. Consequently, we investigated the effect of CysLTR1 inhibition-driven autophagy induction on aggregated proteins in ARPE-19 cells using flow cytometry analysis. A subset of ARPE-19 cells expressed CysLTR1 on the surface (SE+); these cells showed increased levels of autophagosomes, late endosomes/lysosomes, aggregated proteins, and autophagy as well as decreased reactive oxygen species (ROS) formation. Furthermore, CysLTR1 inhibition for 24 h using the antagonist zafirlukast decreased the quantities of autophagosomes, late endosomes/lysosomes, aggregated proteins and ROS in CysLTR1 SE- and SE+ cells. We concluded that high levels of plasma membrane-localized CysLTR1 indicate an increased amount of aggregated protein, which raises the rate of autophagic flux. Furthermore, CysLTR1 antagonist application potentially mimics the physiological conditions observed in CysLTR1 SE+ cells and can be considered as strategy to dampen cellular aging.


Assuntos
Autofagossomos , Autofagia , Células Epiteliais , Autofagossomos/metabolismo , Células Epiteliais/metabolismo , Lisossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retina/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa