Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 25(24): 6108-6112, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30868660

RESUMO

Advancement of hyperpolarized 129 Xe MRI technology toward clinical settings demonstrates the considerable interest in this modality for diagnostic imaging. The number of contrast agents, termed biosensors, for 129 Xe MRI that respond to specific biological targets, has grown and diversified. Directly functionalized xenon-carrying macrocycles, such as the large family of cryptophane-based biosensors, are good for localization-based imaging and provide contrast before and after binding events occur. Noncovalently functionalized constructs, such as cucurbituril- and cyclodextrin-based biosensors, benefit from commercial availability and optimal exchange dynamics for CEST imaging. In this work, we report the first directly functionalized cucurbituril used as a xenon biosensor. Biotinylated cucurbit[7]uril (btCB7) gives rise to a 129 Xe hyperCEST response at the unusual shift of δ=28 ppm when bound to its protein target with substantial CEST contrast. We posit that the observed chemical shift is due to the deformation of btCB7 upon binding to avidin, caused by proximity to the protein surface. Conformational searches and molecular dynamics (MD) simulations support this hypothesis. This construct combines the strengths of both families of biosensors, enables a multitude of biological targets through avidin conjugation, and demonstrates the advantages of functionalized cucurbituril-based biosensors.


Assuntos
Avidina/química , Técnicas Biossensoriais/métodos , Biotina/química , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Simulação de Dinâmica Molecular , Compostos Policíclicos/química , Ligação Proteica , Isótopos de Xenônio
2.
Angew Chem Int Ed Engl ; 58(29): 9948-9953, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004389

RESUMO

The development of sensitive and chemically selective MRI contrast agents is imperative for the early detection and diagnosis of many diseases. Conventional responsive contrast agents used in 1 H MRI are impaired by the high abundance of protons in the body. 129 Xe hyperCEST NMR/MRI comprises a highly sensitive complement to traditional 1 H MRI because of its ability to report specific chemical environments. To date, the scope of responsive 129 Xe NMR contrast agents lacks breadth in the specific detection of small molecules, which are often important markers of disease. Herein, we report the synthesis and characterization of a rotaxane-based 129 Xe hyperCEST NMR contrast agent that can be turned on in response to H2 O2 , which is upregulated in several disease states. Added H2 O2 was detected by 129 Xe hyperCEST NMR spectroscopy in the low micromolar range, as well as H2 O2 produced by HEK 293T cells activated with tumor necrosis factor.


Assuntos
Peróxido de Hidrogênio/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Rotaxanos/uso terapêutico
3.
Angew Chem Int Ed Engl ; 55(15): 4666-70, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26954536

RESUMO

Studies of hyperpolarized xenon-129 (hp-(129)Xe) in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. Herein a device is reported that can be reliably used to dissolve hp-(129)Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes (<60 µL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments show that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy.

4.
Chemphyschem ; 16(17): 3573-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26376768

RESUMO

Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca(2+) , Cu(2+) , Ce(3+) , Zn(2+) , Cd(2+) , Ni(2+) , Co(2+) , Cr(2+) , Fe(3+) , and Hg(2+) are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of (129) Xe. These sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.


Assuntos
Quelantes/química , Compostos Heterocíclicos com 1 Anel/química , Metais Alcalinoterrosos/química , Metais Pesados/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Isótopos de Xenônio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa