Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 31(48): 17612-21, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22131422

RESUMO

CCAAT enhancer binding protein-delta (C/EBPδ) is a transcription factor that regulates inflammatory processes mediating bystander neuronal injury and CNS autoimmune inflammatory disease. The mechanism of the involvement of C/EBPδ in these processes remains to be determined. Here, we examined the cellular source(s) and mechanisms by which C/EBPδ may be involved in an animal model of multiple sclerosis. Mice deficient in C/EBPδ expression exhibited less severe clinical disease than wild-type littermates in response to induction of experimental autoimmune encephalomyelitis (EAE) by vaccination with a myelin oligodendrocyte glycoprotein (MOG) fragment. This reduction in EAE severity was associated with a significant alteration in the complement of major CNS T-helper (Th) cell subtypes throughout disease, manifest as reduced ratios of Th17 cells to regulatory T-cells (Tregs). Studies in bone marrow chimeric mice indicated that C/EBPδ expression by peripherally derived immune cells mediates C/EBPδ involvement in EAE. Follow up in vitro and in vivo examination of dendritic cell (DC) mediated Th-cell development suggests that C/EBPδ suppresses DC expression of interleukin-10 (IL-10), favoring Th17 over Treg development. In vitro and in vivo blockade of IL-10 signaling attenuated the effect of reduced C/EBPδ expression by DCs on Th17:Treg ratios. These findings identify C/EBPδ as an important DC transcription factor in CNS autoimmune inflammatory disease by virtue of its capacity to alter the Th17:Treg balance in an IL-10 dependent fashion.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Interleucina-10/metabolismo , Camundongos , Camundongos Knockout , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Associada a Mielina/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Regulação para Cima
2.
Int J Mol Sci ; 14(1): 547-62, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23271370

RESUMO

Multiple sclerosis (MS) is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs), the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Terapia de Alvo Molecular , Vitamina D/metabolismo
3.
Growth Factors ; 29(5): 187-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21831009

RESUMO

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) is associated with cardiovascular disease, inflammation, body weight regulation and cancer. Its serum levels facilitate the diagnosis and prognosis of cancer and vascular disease. Furthermore, its serum levels are a powerful predictor of all-cause mortality, suggesting a fundamental role in biological processes associated with ageing. In cancer, the data available suggest that MIC-1/GDF15 is antitumorigenic, but this may not always be the case as disease progresses. Cancer promoting effects of MIC-1/GDF15 may be due, in part, to effects on antitumour immunity. This is suggested by the anti-inflammatory and immunosuppressive properties of MIC-1/GDF15 in animal models of atherosclerosis and rheumatoid arthritis. Furthermore, in late-stage cancer, large amounts of MIC-1/GDF15 in the circulation suppress appetite and mediate cancer anorexia/cachexia, which can be reversed by monoclonal antibodies in animals. Available data suggest MIC-1/GDF15 may be an important molecule mediating the interplay between cancer, obesity and chronic inflammation.


Assuntos
Fator 15 de Diferenciação de Crescimento/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo , Envelhecimento , Animais , Anorexia/metabolismo , Anorexia/terapia , Biomarcadores , Caquexia/metabolismo , Caquexia/terapia , Doenças Cardiovasculares/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Fator 15 de Diferenciação de Crescimento/sangue , Humanos , Camundongos , Neoplasias/imunologia
4.
Cell Metab ; 28(3): 353-368, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184485

RESUMO

MIC-1/GDF15 is a stress response cytokine and a distant member of the transforming growth factor beta (TGFb) superfamily, with no close relatives. It acts via a recently identified receptor called glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL), which is a distant orphan member of the GDNF receptor family that signals through the tyrosine kinase receptor Ret. MIC-1/GDF15 expression and serum levels rise in response to many stimuli that initiate cell stress and as part of a wide variety of disease processes, most prominently cancer and cardiovascular disease. The best documented actions of MIC-1/GDF15 are on regulation of energy homeostasis. When MIC-1/GDF15 serum levels are substantially elevated in diseases like cancer, it subverts a physiological pathway of appetite regulation to induce an anorexia/cachexia syndrome initiated by its actions on hindbrain neurons. These effects make it a potential target for the treatment of both obesity and anorexia/cachexia syndromes, disorders lacking any highly effective, readily accessible therapies.


Assuntos
Caquexia/metabolismo , Metabolismo Energético/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/metabolismo , Animais , Anorexia/metabolismo , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Homeostase , Humanos , Inflamação/metabolismo , Camundongos , Doenças Mitocondriais/metabolismo , Neoplasias/metabolismo , Ratos
5.
PLoS One ; 12(1): e0168416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081177

RESUMO

Macrophage inhibitory cytokine-1 (MIC-1), also known as growth differentiation factor 15 (GDF15), is a stress response cytokine. MIC-1/GDF15 is secreted into the cerebrospinal fluid and increased levels of MIC-1/GDF15 are associated with a variety of diseases including cognitive decline. Furthermore, Mic-1/Gdf15 knockout mice (Mic-1 KO) weigh more, have increased adiposity, associated with increased spontaneous food intake, and exhibit reduced basal energy expenditure and physical activity. The current study was designed to comprehensively determine the role of MIC-1/GDF15 on behavioural domains of male and female knockout mice including locomotion, exploration, anxiety, cognition, social behaviours, and sensorimotor gating. Mic-1 KO mice exhibited a task-dependent increase in locomotion and exploration and reduced anxiety-related behaviours across tests. Spatial working memory and social behaviours were not affected by Mic-1/Gdf15 deficiency. Interestingly, knockout mice formed an increased association with the conditioned stimulus in fear conditioning testing and also displayed significantly improved prepulse inhibition. Overall sex effects were evident for social behaviours, fear conditioning, and sensorimotor gating. This is the first study defining the role of Mic-1/Gdf15 in a number of behavioural domains. Whether the observed impact is based on direct actions of Mic-1/Gdf15 deficiency on the CNS or whether the behavioural effects are mediated by indirect actions on e.g. other neurotransmitter systems must be clarified in future studies.


Assuntos
Comportamento Animal , Ingestão de Alimentos , Comportamento Exploratório , Fator 15 de Diferenciação de Crescimento/deficiência , Caracteres Sexuais , Comportamento Social , Animais , Ingestão de Alimentos/genética , Feminino , Masculino , Camundongos , Camundongos Knockout
6.
Biol Open ; 5(5): 620-30, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27113959

RESUMO

Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1(-/-)) and wild-type (CLIC1(+/+)) mice, then studied them in vitro and in vivo We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1(-/-) BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1(+/+), but not CLIC1(-/-) cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1(-/-) BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases.

7.
Neurotox Res ; 7(1-2): 125-41, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15639804

RESUMO

Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3), Ca2+ ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Ca(II) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.


Assuntos
Doença de Alzheimer/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/toxicidade , Neurônios/patologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores
8.
Brain Res Dev Brain Res ; 139(2): 107-19, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12480125

RESUMO

GABA(A) receptor sites were characterised in cerebral cortex tissue samples from deceased neurologically normal infants who had come to autopsy during the third trimester of pregnancy. Pharmacological parameters were obtained from homogenate binding studies which utilised the 'central-type' benzodiazepine ligands [3H]diazepam and [3H]flunitrazepam, and from the GABA activation of [3H]diazepam binding. It was found that the two radioligands behaved differently during development. The affinity of [3H]flunitrazepam for its binding site did not vary significantly between preparations, whereas the [3H]diazepam K(D) showed marked regional and developmental variations: infant tissues showed a distinctly lower affinity than adults for this ligand. The density of [3H]flunitrazepam binding sites increased approximately 35% during the third trimester to reach adult levels by term, whereas [3H]diazepam binding capacity declined slightly but steadily throughout development. The GABA activation of [3H]diazepam binding was less efficient early in the trimester, in that the affinity of the agonist was significantly lower, though it rose to adult levels by term. The strength of the enhancement response increased to adult levels over the same time-frame. The results strongly suggest that the subunit composition of cortical GABA(A) sites changes significantly during this important developmental stage.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/embriologia , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Idoso , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Diazepam/farmacologia , Feminino , Feto , Flunitrazepam/farmacologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/citologia , Gravidez , Subunidades Proteicas/efeitos dos fármacos , Ensaio Radioligante , Receptores de GABA-A/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
9.
J Clin Invest ; 124(3): 1228-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569378

RESUMO

In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.


Assuntos
Movimento Celular , Células Dendríticas/fisiologia , Tolerância Imunológica , Prosencéfalo/imunologia , Animais , Antígenos CD11/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Cloridrato de Fingolimode , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pescoço , Propilenoglicóis , Prosencéfalo/patologia , Esfingosina/análogos & derivados , Linfócitos T Reguladores/imunologia
10.
J Cachexia Sarcopenia Muscle ; 3(4): 239-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22936174

RESUMO

Anorexia/cachexia is a common and currently mostly untreatable complication of advanced cancer. It is also a feature of a number of chronic diseases and can also occur as part of the normal ageing process. Over recent years, two different, but sometimes overlapping, processes have been identified to mediate anorexia/cachexia: those that act primarily on muscle reducing its mass and function, and processes that decrease nutrition leading to loss of both fat and muscle. In the case of at least some cancers, the latter process is sometimes driven by marked overexpression of macrophage inhibitory cytokine-1/growth differentiation factor 15 (MIC-1/GDF15). MIC-1/GDF15 is a transforming growth factor beta (TGF-ß) family cytokine that is found in the serum of all normal individuals at an average concentration of about 0.6 ng/ml. Its increased expression in both cancers and other diseases can result in 10-100-fold or more elevation of its serum levels. In experimental animals, serum MIC-1/GDF15 levels at the lower end of this range induce anorexia by direct actions of the circulating cytokine on feeding centres in the brain. Mice with tumours overexpressing MIC-1/GDF15 display decreased food intake, loss of lean and fat mass and cachexia. That this process also mediates anorexia/cachexia in humans is suggested by the fact that there is a direct correlation between the degree of serum MIC-1/GDF15 elevation and the amount of cancer-related weight loss, the first such relationship demonstrated. Further, in experimental animals, weight loss can be reversed by neutralisation of tumour-produced MIC-1/GDF15 with a specific monoclonal antibody, suggesting the possibility of effective therapy of patients with the devastating complication of anorexia/cachexia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa