Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 764-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609546

RESUMO

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Assuntos
Síndromes de Imunodeficiência , Proteínas do Tecido Nervoso , Ubiquitinas , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Feminino , Masculino , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Inflamação/imunologia , Inflamação/genética , Linfócitos B/imunologia , Mutação com Perda de Função , Fibroblastos/metabolismo , Fibroblastos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Camundongos , Alelos
2.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38949522

RESUMO

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Assuntos
Carboxiliases , Lúpus Eritematoso Sistêmico , Macrófagos , Camundongos Knockout , Succinatos , Animais , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Humanos , Feminino , Macrófagos/imunologia , Succinatos/farmacologia , Doenças Cardiovasculares/imunologia , Biomarcadores , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Adulto , Masculino , Modelos Animais de Doenças , Pessoa de Meia-Idade , Citocinas/metabolismo , Receptor 7 Toll-Like/metabolismo , Hidroliases
3.
Nature ; 577(7788): 103-108, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827281

RESUMO

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


Assuntos
Caspase 8/metabolismo , Doenças Hereditárias Autoinflamatórias/metabolismo , Mutação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 3/metabolismo , Feminino , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
4.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756335

RESUMO

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Assuntos
Antineoplásicos , Fator de Transcrição STAT5 , Humanos , Imunidade Inata , Diferenciação Celular , Células Matadoras Naturais , Inflamação , Fator de Transcrição STAT4/genética
5.
Ann Rheum Dis ; 83(6): 787-798, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408849

RESUMO

OBJECTIVES: To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in PSTPIP1. METHODS: Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation. Cytokine levels in the skin were evaluated by immunohistochemistry. Responsiveness to Janus kinase (JAK) inhibitors was evaluated ex vivo with peripheral blood mononuclear cells and in vivo in five treatment-refractory PAPA patients. RESULTS: The knock-in mouse model of PAPA did not recapitulate the human disease. In a human myeloid cell line model, PAPA-associated PSTPIP1 mutations activated the pyrin inflammasome, but not the NLRP3, NLRC4 or AIM2 inflammasomes. Pyrin inflammasome activation was independent of the canonical pathway of pyrin serine dephosphorylation and was blocked by the p.W232A PSTPIP1 mutation, which disrupts pyrin-PSTPIP1 interaction. IFN-γ priming of monocytes from PAPA patients led to IL-18 release in a pyrin-dependent manner. IFN-γ was abundant in the inflamed dermis of PAPA patients, but not patients with idiopathic pyoderma gangrenosum. Ex vivo JAK inhibitor treatment attenuated IFN-γ-mediated pyrin induction and IL-18 release. In 5/5 PAPA patients, the addition of JAK inhibitor therapy to IL-1 inhibition was associated with clinical improvement. CONCLUSION: PAPA-associated PSTPIP1 mutations trigger a pyrin-IL-18-IFN-γ positive feedback loop that drives PAPA disease activity and is a target for JAK inhibition.


Assuntos
Acne Vulgar , Proteínas Adaptadoras de Transdução de Sinal , Artrite Infecciosa , Proteínas do Citoesqueleto , Interferon gama , Interleucina-18 , Pioderma Gangrenoso , Pirina , Interferon gama/metabolismo , Retroalimentação Fisiológica , Acne Vulgar/genética , Acne Vulgar/metabolismo , Artrite Infecciosa/genética , Artrite Infecciosa/metabolismo , Pioderma Gangrenoso/genética , Pioderma Gangrenoso/metabolismo , Síndrome , Animais , Camundongos , Modelos Animais de Doenças , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Genes Dominantes , Linhagem Celular Tumoral , Humanos , RNA Interferente Pequeno/genética , Inibidores de Janus Quinases/farmacologia , Pirina/metabolismo , Inflamassomos , Interleucina-18/metabolismo , Camundongos Knockout
6.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868845

RESUMO

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Assuntos
Doenças Hereditárias Autoinflamatórias , NF-kappa B , Proteínas Quinases/genética , Amiloidose , Animais , Estudos de Coortes , Mutação com Ganho de Função , Doenças Hereditárias Autoinflamatórias/genética , Humanos , Inflamação/genética , Camundongos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Qualidade de Vida , Proteína Amiloide A Sérica , Síndrome , Inibidores do Fator de Necrose Tumoral
7.
Proc Natl Acad Sci U S A ; 113(6): 1612-7, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26802121

RESUMO

Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations. Individuals harboring these mutations develop inflammatory skin and intestinal disease in addition to ectodermal dysplasia with anhidrosis and immunodeficiency. Both primary cells from these patients, as well as reconstituted cell lines with this deletion, exhibited increased IκB kinase (IKK) activity and production of proinflammatory cytokines. Unlike previously described loss-of-function mutations, ΔCT-NEMO mutants promoted increased NF-κB activation in response to TNF and Toll-like receptor stimulation. Investigation of the underlying mechanisms revealed impaired interactions with A20, a negative regulator of NF-κB activation, leading to prolonged accumulation of K63-ubiquitinated RIP within the TNFR1 signaling complex. Recruitment of A20 to the C-terminal domain of NEMO represents a novel mechanism limiting NF-κB activation by NEMO, and its absence results in autoinflammatory disease.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Núcleo Celular/metabolismo , Citocinas/biossíntese , Enzima Desubiquitinante CYLD , Feminino , Regulação da Expressão Gênica , Humanos , Quinase I-kappa B/genética , Imunidade Inata , Inflamação/imunologia , Inflamação/patologia , Masculino , Monócitos/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Linhagem , Fenótipo , Poliubiquitina/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
8.
Proc Natl Acad Sci U S A ; 113(36): 10127-32, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27559085

RESUMO

Systemic autoinflammatory diseases are caused by mutations in genes that function in innate immunity. Here, we report an autoinflammatory disease caused by loss-of-function mutations in OTULIN (FAM105B), encoding a deubiquitinase with linear linkage specificity. We identified two missense and one frameshift mutations in one Pakistani and two Turkish families with four affected patients. Patients presented with neonatal-onset fever, neutrophilic dermatitis/panniculitis, and failure to thrive, but without obvious primary immunodeficiency. HEK293 cells transfected with mutated OTULIN had decreased enzyme activity relative to cells transfected with WT OTULIN, and showed a substantial defect in the linear deubiquitination of target molecules. Stimulated patients' fibroblasts and peripheral blood mononuclear cells showed evidence for increased signaling in the canonical NF-κB pathway and accumulated linear ubiquitin aggregates. Levels of proinflammatory cytokines were significantly increased in the supernatants of stimulated primary cells and serum samples. This discovery adds to the emerging spectrum of human diseases caused by defects in the ubiquitin pathway and suggests a role for targeted cytokine therapies.


Assuntos
Alelos , Endopeptidases/genética , Fibroblastos/patologia , Doenças Hereditárias Autoinflamatórias/genética , Leucócitos Mononucleares/patologia , Mutação , Idade de Início , Criança , Pré-Escolar , Consanguinidade , Citocinas/genética , Citocinas/imunologia , Dermatite/fisiopatologia , Endopeptidases/deficiência , Endopeptidases/imunologia , Insuficiência de Crescimento/fisiopatologia , Feminino , Febre/fisiopatologia , Fibroblastos/enzimologia , Fibroblastos/imunologia , Regulação da Expressão Gênica , Células HEK293 , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/enzimologia , Doenças Hereditárias Autoinflamatórias/patologia , Humanos , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/imunologia , Masculino , NF-kappa B/genética , NF-kappa B/imunologia , Paniculite/fisiopatologia , Linhagem , Transdução de Sinais , Ubiquitina/genética , Ubiquitina/imunologia
9.
Ann Rheum Dis ; 77(4): 612-619, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358286

RESUMO

OBJECTIVES: To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS: We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS: We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1ß were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS: Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.


Assuntos
Anemia Sideroblástica/genética , Anti-Inflamatórios/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndromes de Imunodeficiência/genética , Mutação , Nucleotidiltransferases/genética , RNA de Transferência/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Anemia Sideroblástica/sangue , Criança , Pré-Escolar , Citocinas/sangue , Citocinas/genética , Deficiências do Desenvolvimento/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Humanos , Imunofenotipagem , Masculino , Linhagem , Fenótipo , Fator de Necrose Tumoral alfa/análise , Sequenciamento do Exoma
12.
medRxiv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38605883

RESUMO

Objective: The Krebs cycle enzyme Aconitate Decarboxylase 1 (ACOD1) mediates itaconate synthesis in myeloid cells.. Previously, we reported that administration of 4-octyl itaconate abrogated lupus phenotype in mice. Here, we explore the role of the endogenous ACOD1/itaconate pathway in the development of murine lupus as well as their relevance in premature cardiovascular damage in SLE. Methods: We characterized Acod1 protein expression in bone marrow-derived macrophages and human monocyte-derived macrophages, following a TLR7 agonist (imiquimod, IMQ). Wild type and Acod1-/- mice were exposed to topical IMQ for 5 weeks to induce an SLE phenotype and immune dysregulation was quantified. Itaconate serum levels were quantified in SLE patients and associated to cardiometabolic parameters and disease activity. Results: ACOD1 was induced in mouse bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages following in vitro TLR7 stimulation. This induction was partially dependent on type I Interferon receptor signaling and specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum anti-dsDNA and proinflammatory cytokine levels, enhanced kidney immune complex deposition and proteinuria, when compared to the IMQ-treated WT mice. Consistent with these results, Acod1-/- BMDM exposed to IMQ showed higher proinflammatory features in vitro. Itaconate levels were decreased in SLE serum compared to healthy control sera, in association with specific perturbed cardiometabolic parameters and subclinical vascular disease. Conclusion: These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in SLE, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.

13.
Protein Expr Purif ; 85(2): 187-99, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22910563

RESUMO

Titin is a large elastic protein found in muscle that maintains the elasticity and structural integrity of the sarcomere. The PEVK region of titin is intrinsically disordered, highly elastic and serves as a hub to bind signaling proteins. Systematic investigation of the structure and affinity profile of the PEVK region will provide important information about the functions of titin. Since PEVK is highly heterogeneous due to extensive differential splicing from more than one hundred exons, we engineered and expressed polyproteins that consist of a defined number of identical single exon modules. These customized polyproteins reduce heterogeneity, amplify interactions of less dominant modules, and most importantly, provide tags for atomic force microscopy and allow more readily interpretable data from single-molecule techniques. Expression and purification of recombinant polyprotein with repeat regions presented many technical challenges: recombination events in tandem repeats of identical DNA sequences exacerbated by high GC content, toxicity of polymer plasmid and expressed protein to the bacteria; early truncation of proteins expressed with different numbers of modules; and extreme sensitivity to proteolysis. We have investigated a number of in vitro and in vivo bacterial and yeast expression systems, as well as baculoviral systems as potential solutions to these problems. We successfully expressed and purified in gram quantities a polyprotein derived from human titin exon 172 using Pichia pastoris yeast. This study provides valuable insights into the technical challenges regarding the engineering and purification of a tandem repeat sequence of an intrinsically disordered biopolymer.


Assuntos
Proteínas Musculares/genética , Poliproteínas/genética , Proteínas Quinases/genética , Proteínas Recombinantes/genética , Baculoviridae/genética , Western Blotting , Conectina , Escherichia coli/genética , Glucose/metabolismo , Humanos , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Pichia/genética , Plasmídeos , Poliproteínas/química , Poliproteínas/metabolismo , Engenharia de Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sequências de Repetição em Tandem , Domínios de Homologia de src
14.
Lupus Sci Med ; 9(1)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220328

RESUMO

OBJECTIVE: In patients with systemic lupus erythematosus (SLE), fatigue is a debilitating symptom with poorly understood pathophysiology. Cardiorespiratory dysfunction has been hypothesised as a contributor to SLE-fatigue. The purpose of this exploratory study was to examine changes in cardiorespiratory function, following an exercise training programme in women with SLE, together with patient reported outcomes and other pathophysiological measures that may underlie SLE-fatigue. METHODS: Sixteen women with SLE and fatigue (Fatigue Severity Scale (FSS) ≥3) were enrolled in a supervised aerobic exercise training programme of vigorous intensity. The primary outcome was time to reach anaerobic threshold (AT-Time) during a cardiopulmonary exercise test (CPET). Secondary outcomes included changes in the 10-minute walk test (10MWT), FSS scores and the Patient Reported Outcomes Measurement Information System (PROMIS-57) survey. Mitochondrial function was assessed by the oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) metabolic potential ratio. RESULTS: Following 12 weeks of exercise training, AT-Time increased by 93±82 (mean±SD) s (p<0.001), 10MWT increased by 84±66 m (p<0.001) and peak oxygen uptake (VO2) increased by 1.4±2.0 mL/kg/min (p=0.013). There were improvements in FSS score (-1.4±1.0, p<0.0001) and in most of the PROMIS-57 domains. The decrease in FSS scores correlated with an increase in the OCR/ECAR ratio (Pearson's correlation r=-0.59, p=0.03). A subset of subjects (9/15) had significant reduction in their Interferon Stimulated Genes (ISG) (p=0.007) accompanied by a significant increase in the OCR/ECAR ratio (p=0.013). CONCLUSIONS: Cardiorespiratory function was improved in concomitance with reductions in fatigue following a 12-week aerobic exercise programme. The reduction in fatigue scores correlated with improvements in mitochondrial function.


Assuntos
Lúpus Eritematoso Sistêmico , Exercício Físico/fisiologia , Fadiga/complicações , Fadiga/diagnóstico , Feminino , Humanos , Interferons , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/terapia , Oxigênio , Projetos Piloto
15.
Sci Immunol ; 7(74): eabl3795, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35984892

RESUMO

A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death. Increased MHC-II presentation of PDIA3 peptides was associated with antigen-specific proliferation of hepatic CD4+ immune infiltrates and isotype switch of anti-PDIA3 antibodies from IgM to IgG3, indicative of cellular and humoral PDIA3 autoreactivity. Passive transfer of PDIA3-specific T cells or PDIA3-specific antibodies also exacerbated hepatocyte death, as determined by increased hepatic transaminases detected in the sera of mice subjected to an HFHF but not control diet. Increased humoral responses to PDIA3 were also observed in patients with chronic inflammatory liver conditions, including autoimmune hepatitis, primary biliary cholangitis, and type 2 diabetes. Together, our data indicated that metabolic insults caused by an HFHF diet elicited liver damage and promoted pathogenic immune autoreactivity driven by T and B cell PDIA3 epitopes.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 2 , Fígado , Isomerases de Dissulfetos de Proteínas , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Epitopos , Antígenos de Histocompatibilidade Classe II , Fígado/patologia , Camundongos , Peptídeos , Isomerases de Dissulfetos de Proteínas/imunologia , Isomerases de Dissulfetos de Proteínas/metabolismo
16.
Sci Adv ; 7(47): eabi6794, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797715

RESUMO

OTULIN is a linear deubiquitinase that negatively regulates the nuclear factor κB (NF-κB) signaling pathway. Patients with OTULIN deficiency, termed as otulipenia or OTULIN-related autoinflammatory syndrome, present with early onset severe systemic inflammation due to increased NF-κB activation. We aimed to investigate additional disease mechanisms of OTULIN deficiency. Our study found a remarkable activation of type I interferon (IFN-I) signaling in whole blood, peripheral blood mononuclear cells, monocytes, and serum from patients with OTULIN deficiency. We observed similar immunologic findings in OTULIN-deficient cell lines generated by CRISPR. Mechanistically, we identified proteasome subunits as substrates of OTULIN deubiquitinase activity and demonstrated proteasome dysregulation in OTULIN-deficient cells as the cause of IFN-I activation. These results reveal an important role of linear ubiquitination in the regulation of proteasome function and suggest a link in the pathogenesis of proteasome-associated autoinflammatory syndromes and OTULIN deficiency.

17.
Nat Commun ; 12(1): 4447, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290243

RESUMO

Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-L-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-γ mediated STAT1/NF-κΒ pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1ß, IFN-γ, and IL-17 production, and inhibiting generation of effector CD8+ T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance.


Assuntos
Aminas Biogênicas/farmacologia , Imunomodulação/efeitos dos fármacos , Cinurenina/análogos & derivados , Animais , Aminas Biogênicas/metabolismo , Aminas Biogênicas/uso terapêutico , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Células Endoteliais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação , Interferon gama/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Cinurenina/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Nefrite/tratamento farmacológico , Nefrite/imunologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Triptofano/metabolismo
18.
Nat Commun ; 12(1): 3391, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099646

RESUMO

Increased risk of premature cardiovascular disease (CVD) is well recognized in systemic lupus erythematosus (SLE). Aberrant type I-Interferon (IFN)-neutrophil interactions contribute to this enhanced CVD risk. In lupus animal models, the Janus kinase (JAK) inhibitor tofacitinib improves clinical features, immune dysregulation and vascular dysfunction. We conducted a randomized, double-blind, placebo-controlled clinical trial of tofacitinib in SLE subjects (ClinicalTrials.gov NCT02535689). In this study, 30 subjects are randomized to tofacitinib (5 mg twice daily) or placebo in 2:1 block. The primary outcome of this study is safety and tolerability of tofacitinib. The secondary outcomes include clinical response and mechanistic studies. The tofacitinib is found to be safe in SLE meeting study's primary endpoint. We also show that tofacitinib improves cardiometabolic and immunologic parameters associated with the premature atherosclerosis in SLE. Tofacitinib improves high-density lipoprotein cholesterol levels (p = 0.0006, CI 95%: 4.12, 13.32) and particle number (p = 0.0008, CI 95%: 1.58, 5.33); lecithin: cholesterol acyltransferase concentration (p = 0.024, CI 95%: 1.1, -26.5), cholesterol efflux capacity (p = 0.08, CI 95%: -0.01, 0.24), improvements in arterial stiffness and endothelium-dependent vasorelaxation and decrease in type I IFN gene signature, low-density granulocytes and circulating NETs. Some of these improvements are more robust in subjects with STAT4 risk allele.


Assuntos
Aterosclerose/prevenção & controle , Inibidores de Janus Quinases/administração & dosagem , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Piperidinas/administração & dosagem , Pirimidinas/administração & dosagem , Adulto , Idoso , Animais , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/imunologia , HDL-Colesterol/sangue , Método Duplo-Cego , Feminino , Predisposição Genética para Doença , Fatores de Risco de Doenças Cardíacas , Humanos , Inibidores de Janus Quinases/efeitos adversos , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Piperidinas/efeitos adversos , Pirimidinas/efeitos adversos , Fator de Transcrição STAT4/genética , Resultado do Tratamento , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Adulto Jovem
19.
J Immunol Methods ; 477: 112667, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31726053

RESUMO

Fluorescent cell barcoding (FCB) is a multiplexing technique for high-throughput flow cytometry (FCM). Although powerful in minimizing staining variability, it remains a subjective FCM technique because of inter-operator variability and differences in data analysis. FCB was implemented by combining two-dye barcoding (DyLight 350 plus Pacific Orange) with five-color surface marker antibody and intracellular staining for phosphoprotein signaling analysis. We proposed a robust method to measure intra- and inter-assay variability of FCB in T/B cells and monocytes by combining range and ratio of variability to standard statistical analyses. Data analysis was carried out by conventional and semi-automated workflows and built with R software. Results obtained from both analyses were compared to assess feasibility and reproducibility of FCB data analysis by machine-learning methods. Our results showed efficient FCB using DyLight 350 and Pacific Orange at concentrations of 0, 15 or 30, and 250 µg/mL, and a high reproducibility of FCB in combination with surface marker and intracellular antibodies. Inter-operator variability was minimized by adding an internal control bridged across matrices used as rejection criterion if significant differences were present between runs. Computational workflows showed comparable results to conventional gating strategies. FCB can be used to study phosphoprotein signaling in T/B cells and monocytes with high reproducibility across operators, and the addition of bridge internal controls can further minimize inter-operator variability. This FCB protocol, which has high throughput analysis and low intra- and inter-assay variability, can be a powerful tool for clinical trial studies. Moreover, FCB data can be reliably analyzed using computational software.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Imunofenotipagem/métodos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia , Linfócitos B/metabolismo , Ensaios Clínicos como Assunto , Biologia Computacional/métodos , Estudos de Viabilidade , Corantes Fluorescentes/química , Voluntários Saudáveis , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Monócitos/metabolismo , Fosfoproteínas/metabolismo , Reprodutibilidade dos Testes , Software , Coloração e Rotulagem/métodos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa