Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Microbiol ; 13: 223, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24093492

RESUMO

BACKGROUND: Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid. RESULTS: We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed. CONCLUSIONS: Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria.


Assuntos
Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Lipoproteínas/metabolismo , Mycobacterium bovis/enzimologia , Mycobacterium bovis/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Biologia Computacional , Técnicas de Inativação de Genes , Lipoproteínas/química , Mycobacterium bovis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Nat Commun ; 14(1): 5648, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704632

RESUMO

The outer membrane insertase of Gram-negative bacteria, BAM, is a key target for urgently needed novel antibiotics. Functional reconstitutions of BAM have so far been limited to synthetic membranes and with low throughput capacity for inhibitor screening. Here, we describe a BAM functional assay in native membrane environment capable of high-throughput screening. This is achieved by employing outer membrane vesicles (OMVs) to present BAM directly in native membranes. Refolding of the model substrate OmpT by BAM was possible from the chaperones SurA and Skp, with the required SurA concentration three times higher than Skp. In the OMVs, the antibiotic darobactin had a tenfold higher potency than in synthetic membranes, highlighting the need for native conditions in antibiotics development. The assay is successfully miniaturized for 1536-well plates and upscaled using large scale fermentation, resulting in high-throughput capacities to screen large commercial compound libraries. Our OMV-based assay thus lays the basis for discovery, hit validation and lead expansion of antibiotics targeting BAM.


Assuntos
Antibacterianos , Ensaios de Triagem em Larga Escala , Membranas , Antibacterianos/farmacologia , Bioensaio , Fermentação
3.
J Bacteriol ; 194(15): 3938-49, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609911

RESUMO

Preprolipopoprotein diacylglyceryl transferase (Lgt) is the gating enzyme of lipoprotein biosynthesis, and it attaches a lipid structure to the N-terminal part of preprolipoproteins. Using Lgt from Escherichia coli in a BLASTp search, we identified the corresponding Lgt homologue in Mycobacterium tuberculosis and two homologous (MSMEG_3222 and MSMEG_5408) Lgt in Mycobacterium smegmatis. M. tuberculosis lgt was shown to be essential, but an M. smegmatis ΔMSMEG_3222 mutant could be generated. Using Triton X-114 phase separation and [(14)C]palmitic acid incorporation, we demonstrate that MSMEG_3222 is the major Lgt in M. smegmatis. Recombinant M. tuberculosis lipoproteins Mpt83 and LppX are shown to be localized in the cell envelope of parental M. smegmatis but were absent from the cell membrane and cell wall in the M. smegmatis ΔMSMEG_3222 strain. In a proteomic study, 106 proteins were identified and quantified in the secretome of wild-type M. smegmatis, including 20 lipoproteins. All lipoproteins were secreted at higher levels in the ΔMSMEG_3222 mutant. We identify the major Lgt in M. smegmatis, show that lipoproteins lacking the lipid anchor are secreted into the culture filtrate, and demonstrate that M. tuberculosis lgt is essential and thus a validated drug target.


Assuntos
Deleção de Genes , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Transferases/genética , Transferases/metabolismo , Escherichia coli/genética , Genes Bacterianos , Genes Essenciais
4.
Mol Microbiol ; 80(5): 1395-412, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21477129

RESUMO

Following translocation, bacterial lipoproteins are lipidated by lipoprotein diacylglycerol transferase (Lgt) and cleaved of their signal peptides by lipoprotein signal peptidase (Lsp). In Gram-negative bacteria and mycobacteria, lipoproteins are further lipidated by lipoprotein N-acyl transferase (Lnt), to give triacylated lipoproteins. Streptomyces are unusual amongst Gram-positive bacteria because they export large numbers of lipoproteins via the twin arginine protein transport (Tat) pathway. Furthermore, some Streptomyces species encode two Lgt homologues and all Streptomyces species encode two homologues of Lnt. Here we characterize lipoprotein biogenesis in the plant pathogen Streptomyces scabies and report that lgt and lsp mutants are defective in growth and development while only moderately affected in virulence. Lipoproteins are lost from the membrane in an S. scabies lgt mutant but restored by expression of Streptomyces coelicolor lgt1 or lgt2 confirming that both encode functional Lgt enzymes. Furthermore, lipoproteins are N-acylated in Streptomyces with efficient N-acylation dependent on Lnt1 and Lnt2. However, deletion of lnt1 and lnt2 has no effect on growth, development or virulence. We thus present a detailed study of lipoprotein biogenesis in Streptomyces, the first study of Lnt function in a monoderm bacterium and the first study of bacterial lipoproteins as virulence factors in a plant pathogen.


Assuntos
Proteínas de Bactérias/biossíntese , Vias Biossintéticas , Lipoproteínas/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel Bidimensional , Lipoproteínas/química , Lipoproteínas/genética , Espectrometria de Massas , Mutação , Doenças das Plantas/microbiologia , Raphanus/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/química , Streptomyces/crescimento & desenvolvimento
5.
J Biol Chem ; 284(40): 27146-56, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19661058

RESUMO

Lipoproteins of Gram-negative and Gram-positive bacteria carry a thioether-bound diacylglycerol but differ by a fatty acid amide bound to the alpha-amino group of the universally conserved cysteine. In Escherichia coli the N-terminal acylation is catalyzed by the N-acyltransferase Lnt. Using E. coli Lnt as a query in a BLASTp search, we identified putative lnt genes also in Gram-positive mycobacteria. The Mycobacterium tuberculosis lipoprotein LppX, heterologously expressed in Mycobacterium smegmatis, was N-acylated at the N-terminal cysteine, whereas LppX expressed in a M. smegmatis lnt::aph knock-out mutant was accessible for N-terminal sequencing. Western blot analyses of a truncated and tagged form of LppX indicated a smaller size of about 0.3 kDa in the lnt::aph mutant compared with the parental strain. Matrix-assisted laser desorption ionization time-of-flight/time-of-flight analyses of a trypsin digest of LppX proved the presence of the diacylglycerol modification in both strains, the parental strain and lnt::aph mutant. N-Acylation was found exclusively in the M. smegmatis parental strain. Complementation of the lnt::aph mutant with M. tuberculosis ppm1 restored N-acylation. The substrate for N-acylation is a C16 fatty acid, whereas the two fatty acids of the diacylglycerol residue were identified as C16 and C19:0 fatty acid, the latter most likely tuberculostearic acid. We demonstrate that mycobacterial lipoproteins are triacylated. For the first time to our knowledge, we identify Lnt activity in Gram-positive bacteria and assigned the responsible genes. In M. smegmatis and M. tuberculosis the open reading frames are annotated as MSMEG_3860 and M. tuberculosis ppm1, respectively.


Assuntos
Aciltransferases/metabolismo , Mycobacterium/enzimologia , Actinobacteria/enzimologia , Acilação , Aciltransferases/química , Aciltransferases/genética , Sequência de Aminoácidos , Escherichia coli/enzimologia , Escherichia coli/genética , Ácidos Graxos/metabolismo , Genoma Bacteriano , Lipoproteínas/metabolismo , Dados de Sequência Molecular , Mutação , Mycobacterium/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
6.
Biochem Biophys Res Commun ; 391(1): 679-84, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19944079

RESUMO

Lipoproteins are well known virulence factors of bacterial pathogens in general and of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, in particular. Lipoprotein lipidation between Gram-positive and Gram-negative bacteria differs significantly as these are di- and triacylated, respectively. Little is known about the lipid anchor of mycobacterial lipoproteins. We reported recently that mycobacterial LppX, a lipoprotein involved in synthesis of cell wall components is triacylated, although mycobacteria are classified as GC-rich Gram-positive bacteria. We here exploited the model organism Mycobacterium smegmatis for the expression of Mtb LprF and characterized N-terminal modifications at the molecular level. LprF is a putative lipoprotein of Mtb involved in signaling of potassium-dependent osmotic stress. LprF is extensively modified in a mycobacterium-specific manner by a thioether-linked diacylglyceryl residue with one ester-bound tuberculostearic- and one C16:0 fatty acid and additionally by a third N-linked C16:0 fatty acid, and a hexose.


Assuntos
Lipoproteínas/química , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Lipoproteínas/biossíntese , Lipoproteínas/genética , Dados de Sequência Molecular , Mycobacterium smegmatis/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665275

RESUMO

Active efflux of antibiotics preventing their accumulation to toxic intracellular concentrations contributes to clinically relevant multidrug resistance. Inhibition of active efflux potentiates antibiotic activity, indicating that efflux inhibitors could be used in combination with antibiotics to reverse drug resistance. Expression of ramA by Salmonella enterica serovar Typhimurium increases in response to efflux inhibition, irrespective of the mode of inhibition. We hypothesized that measuring ramA promoter activity could act as a reporter of efflux inhibition. A rapid, inexpensive, and high-throughput green fluorescent protein (GFP) screen to identify efflux inhibitors was developed, validated, and implemented. Two chemical compound libraries were screened for compounds that increased GFP production. Fifty of the compounds in the 1,200-compound Prestwick chemical library were identified as potential efflux inhibitors, including the previously characterized efflux inhibitors mefloquine and thioridazine. There were 107 hits from a library of 47,168 proprietary compounds from L. Hoffmann La Roche; 45 were confirmed hits, and a dose response was determined. Dye efflux and accumulation assays showed that 40 Roche and three Prestwick chemical library compounds were efflux inhibitors. Most compounds had specific efflux-inhibitor-antibiotic combinations and/or species-specific synergy in antibiotic disc diffusion and checkerboard assays performed with Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Salmonella Typhimurium. These data indicate that both narrow-spectrum and broad-spectrum combinations of efflux inhibitors with antibiotics can be found. Eleven novel efflux inhibitor compounds potentiated antibiotic activities against at least one species of Gram-negative bacteria, and data revealing an E. coli mutant with loss of AcrB function suggested that these are AcrB inhibitors.IMPORTANCE Multidrug-resistant Gram-negative bacteria pose a serious threat to human and animal health. Molecules that inhibit multidrug efflux offer an alternative approach to resolving the challenges caused by antibiotic resistance, by potentiating the activity of old, licensed, and new antibiotics. We have developed, validated, and implemented a high-throughput screen and used it to identify efflux inhibitors from two compound libraries selected for their high chemical and pharmacological diversity. We found that the new high-throughput screen is a valuable tool to identify efflux inhibitors, as evidenced by the 43 new efflux inhibitors described in this study.


Assuntos
Antibacterianos/farmacologia , Transporte Biológico/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas de Bactérias/genética , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transativadores/genética
8.
J Mol Med (Berl) ; 97(11): 1601-1613, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31728550

RESUMO

Drug resistance in Mycobacterium tuberculosis is relentlessly progressing while only a handful of novel drug candidates are developed. Here we describe a GFP-based high-throughput screening of 386,496 diverse compounds to identify putative tuberculosis drug candidates. In an exploratory analysis of the model organism M. bovis BCG and M. smegmatis and the subsequent screening of the main library, we identified 6354 compounds with anti-mycobacterial activity. These hit compounds were predominantly selective for mycobacteria while dozens had activity in the low µM range. We tested toxicity against the human monocyte/macrophage cell line THP-1 and elaborated activity against M. tuberculosis growing in liquid broth, under unique conditions such as non-replicating persistence or inhibition of M. tuberculosis residing in macrophages. Finally, spontaneous compound-resistant M. tuberculosis mutants were selected and subsequently analyzed by whole genome sequencing. In addition to compounds targeting the well-described proteins Pks13 and MmpL3, we identified two novel scaffolds targeting the bifunctional guanosine pentaphosphate synthetase/ polyribonucleotide nucleotidyltransferase GpsI, or interacting with the aminopeptidase PepB, a probable pro-drug activator. KEY MESSAGES: A newly identified scaffold targets the bifunctional enzyme GpsI. The aminopeptidase PepB is interacting with a second novel scaffold. Phenotypic screenings regularly identify novel compounds targeting Pks13 and MmpL3.


Assuntos
Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Canamicina/metabolismo , Ligases/metabolismo , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Células THP-1 , Sequenciamento Completo do Genoma
9.
Nat Commun ; 5: 3866, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24832684

RESUMO

Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here we show that human MAIT cells are remarkably oligoclonal in both the blood and liver, display high inter-individual homology and exhibit a restricted length CDR3ß domain of the TCRVß chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Similar to 'conventional' MAIT cells, these lymphocytes react to riboflavin-synthesizing microbes in an MR1-restricted manner and infiltrate solid tissues. Both MAIT cell types release Th0, Th1 and Th2 cytokines, and sCD40L in response to bacterial infection, show cytotoxic capacity against infected cells and promote killing of intracellular bacteria, thus suggesting important protective and immunoregulatory functions of these lymphocytes.


Assuntos
Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/metabolismo , Adulto , Humanos , Análise de Sequência de Proteína , Linfócitos T/metabolismo , Adulto Jovem
10.
Microbiology (Reading) ; 153(Pt 3): 652-658, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17322184

RESUMO

Lipoproteins are a functionally diverse class of secreted bacterial proteins characterized by an N-terminal lipid moiety. The lipid moiety serves to anchor these proteins to the cell surface. Lipoproteins are synthesized as pre-prolipoproteins and mature by post-translational modifications. The post-translational modifications are directed by the lipobox motif located within the signal peptide. Enzymes involved in lipoprotein synthesis are essential in Gram-negative bacteria but not in Gram-positive bacteria. Inactivation of genes involved in lipoprotein synthesis attenuates a variety of Gram-positive pathogens, including Mycobacterium tuberculosis. The attenuated phenotype of these mutants indicates an important role of lipoproteins and lipoprotein synthesis in bacterial virulence. M. tuberculosis, the causative agent of tuberculosis, is one of the most devastating pathogens in the world. This article reviews recent findings on the synthesis, localization and function of lipoproteins in mycobacteria.


Assuntos
Lipoproteínas/biossíntese , Mycobacterium/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa