Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Pharm ; 21(3): 1466-1478, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38346390

RESUMO

The interplay between drug and polymer chemistry and its impact on drug release from an amorphous solid dispersion (ASD) is a relatively underexplored area. Herein, the release rates of several drugs of diverse chemistry from hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based ASDs were explored using surface area normalized dissolution. The tendency of the drug to form an insoluble complex with HPMCAS was determined through coprecipitation experiments. The role of pH and the extent of drug ionization were probed to evaluate the role of electrostatic interactions in complex formation. Relationships between the extent of complexation and the drug release rate from an ASD were observed, whereby the drugs could be divided into two groups. Drugs with a low extent of insoluble complex formation with HPMCAS tended to be neutral or anionic and showed reasonable release at pH 6.8 even at higher drug loadings. Cationic drugs formed insoluble complexes with HPMCAS and showed poor release when formulated as an ASD. Thus, and somewhat counterintuitively, a weakly basic drug showed a reduced release rate from an ASD at a bulk solution pH where it was ionized, relative to when unionized. The opposite trend was observed in the absence of polymer for the neat amorphous drug. In conclusion, electrostatic interactions between HPMCAS and lipophilic cationic drugs led to insoluble complex formation, which in turn resulted in ASDs with poor release performance.


Assuntos
Metilcelulose , Metilcelulose/análogos & derivados , Polímeros , Polímeros/química , Solubilidade , Liberação Controlada de Fármacos , Metilcelulose/química
2.
Mol Pharm ; 20(11): 5714-5727, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37751517

RESUMO

Hydroxypropyl methylcellulose acetate succinate (HPMCAS) is a weakly acidic polymer that is widely used in the formulation of amorphous solid dispersions (ASDs). While the pH-dependent solubility of HPMCAS is widely recognized, the role of other solution properties, including buffer capacity, is less well understood in the context of ASD dissolution. The goal of this study was to elucidate the rate-limiting steps for drug and HPMCAS release from ASDs formulated with two poorly water soluble model drugs, indomethacin and indomethacin methyl ester. The surface area normalized release rate of the drug and/or polymer in a variety of media was determined. The HPMCAS gel layer apparent pH was determined by incorporating pH sensitive dyes into the polymer matrix. Water uptake extent and rate into the ASDs were measured gravimetrically. For neat HPMCAS, the rate-limiting step for polymer dissolution was observed to be the polymer solubility at the polymer-solution interface. This, in turn, was impacted by the gel layer pH which was found to be substantially lower than the bulk solution pH, varying with medium buffer capacity. For the ASDs, the HPMCAS release rate was found to control the drug release rate. However, both drugs reduced the polymer release rate with indomethacin methyl ester having a larger impact. In low buffer capacity media, the presence of the drug had less impact on release rates when compared to observations in higher strength buffers, suggesting changes in the rate-limiting steps for HPMCAS dissolution. The observations made in this study can contribute to the fundamental understanding of acidic polymer dissolution in the presence and absence of a molecularly dispersed lipophilic drug and will help aid in the design of more in vivo relevant release testing experiments.


Assuntos
Metilcelulose , Polímeros , Solubilidade , Liberação Controlada de Fármacos , Metilcelulose/química , Polímeros/química , Indometacina , Ésteres , Água
3.
AAPS PharmSciTech ; 24(1): 22, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536237

RESUMO

Due to their constituent powders, the materials of advanced compressed oral solid dosage (OSD) forms are micro-composites and strongly visco-elastic at macro- and micro-length scales. The disintegration, drug release, and mechanical strength of OSD forms depend on its micro-texture (such as porosity) and micro-scale physical/mechanical properties. In the current work, an algorithmic ultrasonic characterization framework for extracting the micro-visco-elastic properties of OSD materials is presented, and its applicability is demonstrated with a model material. The proposed approach is based on the effect of visco-elasticity and granularity on the frequency-dependent attenuation of an ultrasonic wave pulse in a composite (granular) and viscous medium. In modeling the material, a two-parameter Zener model for visco-elasticity and a scattering attenuation mechanism based on Rayleigh scattering for long-wave approximation are employed. A novel linear technique for de-coupling the effects of micro-visco-elasticity and scattering on attenuation and dispersion is developed and demonstrated. The apparent Young's modulus, stress, and strain relaxation time constants of the medium at micro-scale are extracted and reported. Based on this modeling and analysis framework, a set of computational algorithms has been developed and demonstrated with experimental data, and its practical utility in pharmaceutical manufacturing and real-time release testing of tablets is discussed.


Assuntos
Ondas Ultrassônicas , Ultrassom , Elasticidade , Módulo de Elasticidade , Comprimidos
4.
Int J Pharm ; 660: 124366, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901541

RESUMO

This research investigates the modeling of the pharmaceutical roller compaction process, focusing on the application of the Johanson model and the impact of varying roll speeds from 1 to 15 RPM on predictive accuracy of ribbon solid fraction. The classical Johanson's model was integrated with a dwell time parameter leading to an expression of a floating correction factor as a function of roll speed. Through systematic analysis of the effect of different roll speeds on the solid fraction of ribbons composed of microcrystalline cellulose, lactose, and their blends, corrective adjustment to the Johanson model was found to depend on both roll speed and formulation composition. Interestingly, the correction factor demonstrated excellent correlation with the blend's mechanical properties, namely yield stress (Py) and elastic modulus (E0), representative of the deformability of the powder. Validated by a multicomponent drug formulation with ±0.4-1.3 % differences, the findings underscore the utility of this modified mechanistic approach for precise prediction of ribbon solid fraction when Py or E0 is known for a given blend. Hence, this work advances the field by offering early insights for more accurate and controllable roller compaction operations during late-stage pharmaceutical manufacturing.

5.
Int J Pharm ; 655: 124049, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537921

RESUMO

In in-process quality monitoring for Continuous Manufacturing (CM) and Critical Quality Attributes (CQA) assessment for Real-time Release (RTR) testing, ultrasonic characterization is a critical technology for its direct, non-invasive, rapid, and cost-effective nature. In quality evaluation with ultrasound, relating a pharmaceutical tablet's ultrasonic response to its defect state and quality parameters is essential. However, ultrasonic CQA characterization requires a robust mathematical model, which cannot be obtained with traditional first principles-based modeling approaches. Machine Learning (ML) using experimental data is emerging as a critical analytical tool for overcoming such modeling challenges. In this work, a novel Deep Neural Network-based ML-driven Non-Destructive Evaluation (ML-NDE) modeling framework is developed, and its effectiveness for extracting and predicting three CQAs, namely defect states, compression force levels, and amounts of disintegrant, is demonstrated. Using a robotic tablet handling experimental rig, each attribute's distinct waveform dataset was acquired and utilized for training, validating, and testing the respective ML models. This study details an advanced algorithmic quality assessment framework for pharmaceutical CM in which automated RTR testing is expected to be critical in developing cost-effective in-process real-time monitoring systems. The presented ML-NDE approach has demonstrated its effectiveness through evaluations with separate (unused) test datasets.


Assuntos
Tecnologia Farmacêutica , Ultrassom , Fenômenos Mecânicos , Pressão , Comprimidos
6.
Int J Pharm ; 642: 123156, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37348575

RESUMO

The robustness of tablet manufacturability largely depends on compressibility behavior of a powder. The compressibility assessment is traditionally conducted on cylindrical flat-faced compacts in contrast to the fact that marketed tablets are majorly produced using non-flat faced or shaped toolings. The present work demonstrates the feasibility of quantifying average compressibility on shaped toolings through a proof-of-concept study by investigating the central band portion and the entire volume of the tablet, which led to several notable findings. Firstly, the yield stress (deformability) was found independent of type of tooling for a given powder in the in-die condition, but for the same tooling it conversely spanned over a wide range in the out-die condition due to characteristic elastic recovery. Secondly, the yield stress parameter correlated with the change in band volume of the shaped tablet with applied compaction pressure, thereby establishing an orthogonal approach to assess compressibility on non-flat faced toolings. The study emphasizes that tooling characteristics may affect compressibility and tablet robustness of a same powder, which should be practiced cautiously in drug product manufacturing.


Assuntos
Química Farmacêutica , Pós , Comprimidos , Composição de Medicamentos
7.
Int J Pharm ; 646: 123477, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37797783

RESUMO

A compressed pharmaceutical oral solid dosage (OSD) form is a strongly micro-viscoelastic material composite arranged as a network of agglomerated particles due to its constituent powders and their bonding and fractural mechanical properties. An OSD product's Critical Quality Attributes, such as disintegration, drug release (dissolution) profile, and structural strength ("hardness"), are influenced by its micro-scale properties. Ultrasonic evaluation is direct, non-destructive, rapid, and cost-effective. However, for practical process control applications, the simultaneous extraction of the micro-viscoelastic and scattering properties from a tablet's ultrasonic response requires a unique solution to a challenging inverse mathematical wave propagation problem. While the spatial progression of a pulse traveling in a composite medium with known micro-scale properties is a straightforward computational task when its dispersion relation is known, extracting such properties from the experimentally acquired waveforms is often non-trivial. In this work, a novel Machine Learning (ML)-based micro-property extraction technique directly from waveforms, based on Multi-Output Regression models and Neural Networks, is introduced and demonstrated. Synthetic waveforms with a given set of micro-properties of virtual tablets are computationally generated to train, validate, and test the developed ML models for their effectiveness in the inverse problem of recovering specified micro-scale properties. The effectiveness of these ML models is then tested and demonstrated for a set of physical OSD tablets. The micro-viscoelastic and micro-structural properties of physical tablets with known properties have been extracted through experimentally acquired waveforms to exhibit their consistency with the generated ML-based attenuation results.


Assuntos
Tecnologia Farmacêutica , Ultrassom , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Comprimidos/química , Pressão
8.
Int J Pharm X ; 6: 100188, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37387778

RESUMO

In this study, the torque profiles of heterogeneous granulation formulations with varying powder properties in terms of particle size, solubility, deformability, and wettability, were studied, and the feasibility of identifying the end-point of the granulation process for each formulation based on the torque profiles was evaluated. Dynamic median particle size (d50) and porosity were correlated to the torque measurements to understand the relationship between torque and granule properties, and to validate distinction between different granulation stages based on the torque profiles made in previous studies. Generally, the torque curves obtained from the different granulation runs in this experimental design could be categorized into two different types of torque profiles. The primary factor influencing the likelihood of producing each profile was the binder type used in the formulation. A lower viscosity, higher solubility binder resulted in a type 1 profile. Other contributing factors that affected the torque profiles include API type and impeller speed. Material properties such as the deformability and solubility of the blend formulation and the binder were identified as important factors affecting both granule growth and the type of torque profiles observed. By correlating dynamic granule properties with torque values, it was possible to determine the granulation end-point based on a pre-determined target median particle size (d50) range which corresponded to specific markers identified in the torque profiles. In type 1 torque profiles, the end-point markers corresponded to the plateau phase, whereas in type 2 torque profiles the markers were indicated by the inflection point where the slope gradient changes. Additionally, we proposed an alternative method of identification by using the first derivative of the torque values, which facilitates an easier identification of the system approaching the end-point. Overall, this study identified the effects of different variations in formulation parameters on torque profiles and granule properties and implemented an improved method of identification of granulation end-point that is not dependent on the different types of torque profiles observed.

9.
Int J Pharm ; 623: 121922, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35724823

RESUMO

In compacted materials, elastic anisotropy coupled with residual stresses could play a determining role in the manifestation of various types of defects such as capping and lamination, as it creates shear planes/bands and temporal relaxation. This internal micro-structure leads to time-delayed flaw initiation/formation, crack tip propagation under residual stresses, and ultimately product quality failures. Thus, their accurate characterization and variations are useful for understanding underlying failure mechanisms and to monitor variations in materials, processes and product quality during production prior to onset of failure. The extraction of tablet anisotropic elasticity properties is a challenging task, especially for commercial tablets with complex shapes, as shape often prevents the use of traditional destructive techniques (e.g., diametric compression testers) to produce accurate measurements. This study introduces and applies an ultrasonic approach to extracting the complete transverse isotropic elastic properties of compressed oral solid dosage forms to a commercial tablet product. A complete set of waveforms and the constitutive matrix for the compacted materials are reported. In addition, a perturbation analysis is carried out to analytically relate propagation speeds in various directions to the elastic coefficients. The proposed characterization approach is non-destructive, rapid, easy, and reliable in evaluating tablet anisotropy.


Assuntos
Ultrassom , Anisotropia , Elasticidade , Pressão , Comprimidos/química
10.
J Pharm Sci ; 110(6): 2570-2574, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744275

RESUMO

The evolution of tablet strength is mainly influenced by deformability (bonding area) and strength of intermolecular interactions (bonding strength) from the intrinsic material properties and tableting process, respectively. Therefore, understanding of intrinsic material attributes is important for in-silico drug product designs. The present study shows that the separate effect of the above two factors can be better understood by systematic evaluation of pure APIs and their formulations. Using tensile strength, elastic modulus and yield stress as critical material attributes, a proof of concept shown in this work emphasizes that materials with greater deformability tend to possess greater tensile strength at comparable bonding strengths. In contrast, the influence of the deformability parameter is hidden when formulations are used, leading to a scenario where the effects of bonding area and bonding strength are more inseparable.


Assuntos
Resistência à Tração , Composição de Medicamentos , Módulo de Elasticidade , Comprimidos
11.
J Pharm Sci ; 110(6): 2340-2345, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662393

RESUMO

Capping is a mechanical defect in tablets, which is attributed to multiple factors including intrinsic material properties and tableting conditions. A suitable non-destructive approach using acoustically derived elastic modulus has showed distinctive features between a defective tablet and a defect-free tablet. In this work, a semi-empirical model was developed to estimate flaw size in an internally defective tablet from the relationship among elastic modulus, tablet density, and time of flight (acoustic wave to traverse through the tablet). The model was found fundamentally consistent where the derived flaw size showed clear dependence on powder mechanical properties of seven diverse formulations studied. Furthermore, the flaw size was reasonably correlated with the internal tablet microstructure illustrated by X-ray micro-tomography findings, both qualitatively and quantitatively. This model could thus be efficiently implemented for risk-based evaluation of internal defects in visibly intact tablets to ensure robustness of drug products.


Assuntos
Comprimidos , Composição de Medicamentos , Módulo de Elasticidade , Pós , Microtomografia por Raio-X
12.
Int J Pharm ; 599: 120439, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33662471

RESUMO

Capping is the frequently observed mechanical defect in tablets arising from the sub-optimal selection of the formulation composition and their robustness of response toward process parameters. Hence, overcoming capping propensity based on the understanding of suitable process and material parameters is of utmost importance to expedite drug product development. In the present work, 26 diverse formulations were characterized at commercial tableting condition to identify key tablet properties influencing capping propensity, and a predictive model based on threshold properties was established using machine learning and multivariate tools. It was found that both the compaction parameters (i.e., compaction pressure, radial stress transmission characteristics, and Poisson's ratio), and the material properties, (i.e., brittleness, yield strength, particle bonding strength and elastic recovery) strongly dictate the capping propensity of a tablet. In addition, ratio of elastic modulus in the orthogonal direction in a tablet and its variation with porosity were notable quantitative metrics of capping occurrence.


Assuntos
Aprendizado de Máquina , Composição de Medicamentos , Módulo de Elasticidade , Porosidade , Pós , Comprimidos , Resistência à Tração
13.
ACS Med Chem Lett ; 12(1): 143-154, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33488976

RESUMO

The interleukin (IL)-23/T helper (Th)17 axis plays a critical role in autoimmune diseases, and there is an increasing number of biologic therapies that target IL-23 and IL-17. The transcription factor retinoic acid receptor-related orphan nuclear receptor γt (RORγt) is important for the activation and differentiation of Th17 cells and thus is an attractive pharmacologic target for the treatment of Th17-mediated diseases. A novel series of pyrazinone RORγ antagonists was discovered through hybridization of two distinct screening hits and scaffold hopping. The series offers attractive potency and selectivity in combination with favorable druglike properties, such as metabolic stability and aqueous solubility. Lead optimization identified a clinical candidate, compound (S)-11 (BI 730357), for the treatment of autoimmune diseases.

14.
Eur J Pharm Biopharm ; 151: 137-152, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32304867

RESUMO

Moisture plays a major role in determining the attributes of granules prepared by fluidized bed granulation (FBG). Here, a semi-theoretical droplet-based evaporation rate model was developed and incorporated into moisture mass-enthalpy balances to simulate the temporal evolution of bed moisture-temperature. Experimental data from a GPCG30 unit were used to fit the model parameters. With only two fitting parameters, the model demonstrated excellent capability to describe the moisture-temperature evolution for a wide range of operating conditions. Then, in a global process model (GPM) approach, the evaporation parameters were fitted to multi-linear functions of inlet air temperature, binder concentration, and spray rate. The GPM was validated successfully by simulating a different data set which was not used in its calibration. As the GPM demonstrated a good predictive capability, it was further used to investigate the impacts of process parameters. Numerical simulations suggest that the proposed GPM predicts the experimentally well-established trends of moisture-temperature profiles in previously published data, proving the applicability of the GPM approach. This study has demonstrated the capabilities of simple process models as a practical approach to predict time-wise evolution of bed moisture-temperature profiles in industrial FBG modeling, while also pointing out their limitations.


Assuntos
Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Excipientes/química , Modelos Teóricos , Temperatura
15.
Int J Pharm Investig ; 6(4): 218-224, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123991

RESUMO

INTRODUCTION: The majority of drugs obtained through synthesis and development show poor aqueous solubility and dissolution velocity, resulting in reduced bioavailability of drugs. Most of these problems arise from formulation-related performance issues, and an efficient way to overcome these obstacles and to increase dissolution velocity is to reduce the particle size of drug substances to form drug nanosuspensions. MATERIALS AND METHODS: Danazol nanosuspensions were prepared by wet milling (WM) and high-pressure homogenization (HPH) methods. The nanosuspensions obtained using these fabrication methods were analyzed for their particle size, surface charge, and the crystallinity of the product was assessed by X-ray diffraction (XRD) and differential scanning calorimetry techniques. To determine in vitro and in vivo performances of the prepared nanosuspensions, dissolution velocity, and bioavailability studies were performed. RESULTS: Particle size and zeta potential analysis showed the formation of nanosized particles with a negative charge on the surface. XRD depicted the nanocrystalline nature of danazol with low diffraction intensities. With increased surface area and saturation solubility, the nanosuspensions showed enhanced dissolution velocity and oral bioavailability in rats when compared to the bulk danazol suspension. CONCLUSIONS: The results suggest that the preparation of nanosuspensions by WM or HPH is a promising approach to formulate new drugs or to reformulate existing drugs with poorly water-soluble properties.

16.
Front Pharmacol ; 7: 368, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790142

RESUMO

Establishing a wide therapeutic index (TI) for pre-clinical safety is important during lead optimization (LO) in research, prior to clinical development, although is often limited by a molecules physiochemical characteristics. Recent advances in the application of the innovative vibrating mesh spray-drying technology to prepare amorphous solid dispersions may offer an opportunity to achieve high plasma concentrations of poorly soluble NCEs to enable testing and establishment of a wide TI in safety pharmacology studies. While some of the amorphous solid dispersion carriers are generally recognized as safe for clinical use, whether they are sufficiently benign to enable in vivo pharmacology studies has not been sufficiently demonstrated. Thus, the physical properties, and effect in a battery of in vivo safety pharmacology models, were assessed in three classes of polymers employed as spray-dried dispersion carriers. The polymers (HPMC-AS, Eudragit, PVAP) displayed low affinity with acetone/methanol, suitable for solvent-based spray drying. The water sorption of the polymers was moderate, and the degree of hysteresis of HPMC-AS was smaller than Eudragit and PVAP indicating the intermolecular interaction of water-cellulose molecules is weaker than water-acrylate or water-polyvinyl molecules. The polymer particles were well-suspended without aggregation with a mean particle size less than 3 µm in an aqueous vehicle. When tested in conscious Wistar Han rats in safety pharmacology models (n = 6-8/dose/polymer) investigating effects on CNS, gastrointestinal, and cardiovascular function, no liabilities were identified at any dose tested (30-300 mg/kg PO, suspension). In brief, the polymers had no effect in a modified Irwin test that included observational and evoked endpoints related to stereotypies, excitation, sedation, pain/anesthesia, autonomic balance, reflexes, and others. No effect of the polymers on gastric emptying or intestinal transit was observed when measured using a barium sulfate tracer material. Finally, in telemetry-instrumented rats the polymers had no effect on acute or 24-h mean blood pressure and heart rate values at doses up to 300 mg/kg. Thus, the properties of the three enteric polymers are appropriate as spray-dried dispersion carriers and were benign in a battery of safety pharmacology studies, demonstrating their applicability to enable in vivo safety pharmacology profiling of poorly soluble molecules during LO.

17.
Int J Pharm ; 512(1): 137-146, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27543349

RESUMO

The aim of this study was to identify an adequate formulation for a poorly soluble lead molecule (BI-A) that would achieve sufficiently high plasma concentrations after oral administration in dogs to enable a robust cardiovascular safety pharmacology assessment in telemetry-instrumented conscious dogs during lead optimization in drug discovery. A spray-dried dispersion of BI-A (BI-A-SDD) containing a 1:2 ratio of BI-A and hydroxypropyl methylcellulose acetate succinate-LF was prepared using a Büchi spray dryer B-90 (B-90). Physical form characterization, an in vitro dissolution test and a preliminary pharmacokinetic (PK) study following oral administration of BI-A-SDD were performed. Thereafter, effects on cardiovascular parameters in conscious, chronically-instrumented dogs were investigated for 24h after a single oral dose (5, 10, and 50mg/kg) using a modified Latin square cross-over study design. The BI-A-SDD powder was confirmed to be amorphous and was stable as an aqueous suspension for at least 4h. The BI-A-SDD suspension provided a greater rate and extent of dissolution than the crystalline BI-A suspension and the supersaturation was maintained for at least 4h. In PK studies the Cmax of the BI-A-SDD formulation (25.4µM; 77-fold the projected efficacious Cmax of 0.33µM) was 7.5-fold higher than the Cmax observed using oral administration of a 10% hydroxypropyl-ß-cyclodextrin formulation at 100mg/kg in dogs (3.4µM). In conscious, chronically-instrumented dogs, the doses tested and plasma concentrations achieved were sufficient to enable a robust safety pharmacology evaluation. Multiple off-target hemodynamic effects were detected including acute elevations in aortic blood pressure (up to 22% elevation in systolic and diastolic blood pressure) and tachycardia (68% elevation in heart rate), results that were confirmed in other in vivo models. These results led to a deprioritization of BI-A. The study demonstrated that a spray-dried dispersion, prepared using the B-90 in drug discovery, enhanced the oral exposure of a poorly water-soluble molecule, BI-A, and thereby enabled its evaluation in safety pharmacology studies that ultimately resulted in deprioritization of BI-A from a pool of lead compounds.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hemodinâmica/efeitos dos fármacos , Metilcelulose/análogos & derivados , Pós/efeitos adversos , Pós/farmacocinética , Suspensões/efeitos adversos , Suspensões/farmacocinética , Administração Oral , Animais , Cães , Relação Dose-Resposta a Droga , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Masculino , Metilcelulose/química , Modelos Animais , Tamanho da Partícula , Pós/química , Pós/farmacologia , Tecnologia de Sensoriamento Remoto , Solubilidade , Suspensões/química , Suspensões/farmacologia
18.
Int J Pharm ; 491(1-2): 208-17, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26070248

RESUMO

A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 µm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages.


Assuntos
Química Farmacêutica/instrumentação , Química Farmacêutica/métodos , Dessecação/instrumentação , Dessecação/métodos , Varredura Diferencial de Calorimetria , Excipientes , Derivados da Hipromelose/química , Metilcelulose/química , Microscopia Eletrônica de Varredura , Nanotecnologia , Veículos Farmacêuticos , Polímeros , Solubilidade , Suspensões , Difração de Raios X
19.
Int J Pharm ; 466(1-2): 368-74, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24657557

RESUMO

A new combination approach of quasi-emulsion solvent diffusion (QESD) and confined impinging jet (CIJ) technologies was utilized to formulate pH-susceptible amorphous solid dispersions (ASDs) of a poorly soluble investigational compound (BI906) of Boehringer Ingelheim Pharmaceuticals. The objective of this study was to formulate small-size pH-susceptible ASDs of BI906 to enhance its dissolution and solubility. A design of experiment approach was utilized to study the influence of critical parameters: antisolvent-to-solvent ratio, stabilizer concentration, polymer-to-drug ratio and flow rate of solvent. The critical quality attributes of the pH-susceptible solid dispersions (SDs) were crystallinity, particle size, drug loading and dissolution. The particle size of SDs was dependent on the antisolvent-to-solvent ratio, polymer-to-drug ratio and solvent flow rate. An increase in the solvent flow rate and antisolvent-to-solvent ratio resulted in smaller particle size of SDs. It was observed that the drug crystallinity and drug release were dependent on the polymer-to-drug ratio. The formulations containing a polymer-to-drug ratio of 6:1 were amorphous and showed superior pH dependent in vitro drug release performance. This study demonstrates that this new combination approach is feasible to formulate small-size pH-susceptible ASDs and it can be applied to other poorly soluble drugs to enhance in vitro dissolution and solubility.


Assuntos
Tecnologia Farmacêutica/métodos , Acetona/química , Química Farmacêutica , Difusão , Concentração de Íons de Hidrogênio , Metilcelulose/análogos & derivados , Metilcelulose/química , Cloreto de Metileno/química , Preparações Farmacêuticas/química , Solventes/química , Tecnologia Farmacêutica/instrumentação
20.
Pharm Dev Technol ; 7(1): 103-12, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11852693

RESUMO

The present study was performed to investigate the further increase in drug dissolution on storage of ternary solid-dispersion granules containing poorly water-soluble drugs. Ternary solid-dispersion granules of the drug, a dispersion carrier, and a surface adsorbent were prepared using hot-melt granulation. Two proton-donating drugs, BAY 12-9566, naproxen, and a nonproton-donating drug, progesterone, were studied. Gelucire 50/13 and polyethylene glycol 8000 were evaluated as solid-dispersion carriers with low melting point. Neusilin US2 (magnesium aluminosilicate), a proton acceptor, was used as the surface adsorbent. The proposed mechanism for further increase in drug dissolution (BAY 12-9566 and naproxen) on storage at 40 degrees C/75% RH (relative humidity) is based on hydrogen bonding between the proton-donating drugs and the surface adsorbent, Neusilin US2 (proton acceptor). We propose that there is enough mobility in the solid-dispersion granules at elevated temperatures of storage to allow an increase in the ratio of the hydrogen bonded drug to the crystalline drug. These changes are mediated through the saturated solid solution state, and manifest themselves as increased drug dissolution upon storage. Fourier transform infrared spectroscopy studies are indicative of an increase in the amount of drugs (BAY 12-9566 and naproxen) hydrogen bonded to Neusilin on storage. A corresponding decrease in the crystallinity of these drugs was measured using x-ray powder diffractometry. Granules containing progesterone (a nonproton-donating drug) do not show an increase in the amount of drug hydrogen-bonded to Neusilin upon storage. In contrast to the proton-donating drugs, decreased drug dissolution was found on storage of progesterone-containing granules.


Assuntos
Estabilidade de Medicamentos , Armazenamento de Medicamentos , Compostos Orgânicos , Antineoplásicos/química , Compostos de Bifenilo , Naproxeno/química , Fenilbutiratos , Progesterona/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa