RESUMO
Dendritic cells (DCs) constitute a distinct type of immune cell found within tumors, serving a central role in mediating tumor antigen-specific immunity against cancer cells. Frequently, DC functions are dysregulated by the immunosuppressive signals present within the tumor microenvironment (TME). Consequently, DC manipulation holds great potential to enhance the cytotoxic T cell response against cancer diseases. One strategy involves administering Fms-like tyrosine kinase receptor 3 ligand (Flt3L), a vitally important cytokine for DC development. In this current study, the electroporation-mediated delivery of a novel albumin-fused Flt3L DNA (alb-Flt3L DNA) demonstrated the ability to induce an anti-tumor immune response. This albumin fusion construct possesses more persistent bioactivity in targeted organs. Furthermore, TC-1-bearing-C57BL/6 mice receiving alb-Flt3L DNA treatment presented better tumor control and superior survival. Cellular analysis revealed that alb-Flt3L DNA administration promoted robust DC and cDC1 expansion. In addition, increased levels of IFN-γ-secreting CD8+ lymphocytes were found in correlation to greater cDC1 population. Moreover, the toxicity of alb-Flt3L administration is limited. Collectively, our data showcases a novel DC-based immunotherapy using electroporation to administer alb-Flt3L DNA.
RESUMO
BACKGROUND: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.
Assuntos
Arginina , Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Humanos , Animais , Membrana Externa Bacteriana/imunologia , Camundongos Endogâmicos C57BL , FemininoRESUMO
BACKGROUND: Previous research in FMS-like tyrosine kinase 3 ligands (FLT3L) has primarily focused on their potential to generate dendritic cells (DCs) from bone marrow progenitors, with a limited understanding of how these cells affect CD8 T cell function. In this study, we further investigated the in vivo role of FLT3L for the immunomodulatory capabilities of CD8 T cells. METHODS: Albumin-conjugated FLT3L (Alb-FLT3L) was generated and applied for translational medicine purposes; here it was used to treat naïve C57BL/6 and OT1 mice for CD8 T cell response analysis. Syngeneic B16ova and E.G7ova mouse models were employed for adoptive cell transfer to evaluate the effects of Alb-FLT3L preconditioning of CD8 T cells on tumor progression. To uncover the underlying mechanisms of Alb-FLT3L modulation, we conducted bulk RNA-seq analysis of the CD44high CD8 T cells. STAT1-deficient mice were used to elucidate the functional roles of Alb-FLT3L in the modulation of T cells. Finally, antibody blockade of type one interferon signaling and in vitro coculture of plasmacytoid DCs (pDCs) with naive CD8 T cells was performed to determine the role of pDCs in mediating regulation of CD44high CD8 T cells. RESULTS: CD44high CD8 T cells were enhanced in C57BL/6 mice administrated with Alb-FLT3L. These CD8 T cells exhibited virtual memory features and had greater proliferative and effective functions. Notably, the adoptive transfer of CD44high naïve CD8 T cells into C57BL/6 mice with B16ova tumors led to significant tumor regression. RNA-seq analysis of the CD44high naïve CD8 T cells revealed FLT3L to induce CD44high CD8 T cells in a JAK-STAT1 signaling pathway-dependent manner, as supported by results indicating a decreased ability of FLT3L to enhance CD8 T cell proliferation in STAT1-deficient mice as compared to wild-type control mice. Moreover, antibody blockade of type one interferon signaling restricted the generation of FLT3L-induced CD44high CD8 T cells, while CD44 expression was able to be induced in naïve CD8 T cells cocultured with pDCs derived from FLT3L-treated mice. This suggests the crucial role of pDCs in mediating FLT3L regulation of CD44high CD8 T cells. CONCLUSIONS: These findings provide critical insight and support the therapeutic potential of Alb-FLT3L as an immune modulator in preconditioning of naïve CD8 T cells for cancer immunotherapy.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Células Dendríticas , Interferons , Camundongos Endogâmicos C57BL , Neoplasias/metabolismoRESUMO
BACKGROUND: For centuries, microbial-based agents have been investigated as a therapeutic modality for the treatment of cancer. In theory, these methods would be cheap to produce, broadly applicable in a wide array of cancer types, and could synergize with other cancer treatment strategies. We aimed to assess the efficacy of combining microbial-based therapy using Salmonella SL7207 with interleukin-2 (IL-2), a potent immunostimulatory agent, in the treatment of murine colon carcinoma. METHODS: Female BALB/c mice were implanted subcutaneously with CT26 tumors, a model of colon carcinoma. Mice bearing tumors were selected and administered Albumin-IL-2 (Alb-IL2), a fusion protein, for further analysis of anticancer effect. RESULTS: We demonstrated that Salmonella SL7207, a genetically modified strain of Salmonella enterica serovar Typhimurium, preferentially accumulates in the tumor microenvironment, potentiating it to stimulate localized innate immunity. We delivered IL-2 as a fusion protein, Alb-IL2, which we demonstrate to have preferential accumulation properties, bringing it to the tumor and secondary lymphoid organs. Treatment of tumor-bearing mice with Salmonella + Alb-IL2 leads to superior tumor control and enhanced overall survival compared to controls. When assessing immunological factors contributing to our observed tumor control, significantly enhanced T cell population with superior effector function was observed in mice treated with Salmonella + Alb-IL2. We confirmed that these T cells were indispensable to the observed tumor control through antibody-mediated T cell depletion experiments. CONCLUSIONS: These findings highlight the ability of Salmonella + Alb-IL2 to serve as a novel therapeutic approach to induce T cell-mediated antitumor immunity and exert long-term tumor control in a murine model of cancer.
Assuntos
Carcinoma , Neoplasias do Colo , Albuminas , Animais , Feminino , Interleucina-2 , Camundongos , Salmonella , Microambiente TumoralRESUMO
BACKGROUND: Dysregulation of pericellular proteolysis usually accounts for cancer cell invasion and metastasis. Isolation of a cell-surface protease system for lung cancer metastasis is an important issue for mechanistic studies and therapeutic target identification. METHODS: Immunohistochemistry of a tissue array (n = 64) and TCGA database (n = 255) were employed to assess the correlation between serine protease inhibitors (SPIs) and lung adenocarcinoma progression. The role of SPI in cell motility was examined using transwell assays. Pulldown and LC/MS/MS were performed to identify the SPI-modulated novel protease(s). A xenografted mouse model was harnessed to demonstrate the role of the SPI in lung cancer metastasis. RESULTS: Hepatocyte growth factor activator inhibitor-2 (HAI-2) was identified to be downregulated following lung cancer progression, which was related to poor survival and tumour invasion. We further isolated a serum-derived serine protease, plasmin, to be a novel target of HAI-2. Downregulation of HAI-2 promotes cell surface plasmin activity, EMT, and cell motility. HAI-2 can suppress plasmin-mediated activations of HGF and TGF-ß1, EMT and cell invasion. In addition, downregulated HAI-2 increased metastasis of lung adenocarcinoma via upregulating plasmin activity. CONCLUSION: HAI-2 functions as a novel inhibitor of plasmin to suppress lung cancer cell motility, EMT and metastasis.
Assuntos
Adenocarcinoma de Pulmão/metabolismo , Fibrinolisina/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoproteínas de Membrana/metabolismo , Células A549 , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/secundário , Animais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Fibrinolisina/antagonistas & inibidores , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: Many in vitro studies have revealed that the interference of dye molecules in traditional nanoparticle cytotoxicity assays results in controversial conclusions. The aim of this study is to establish an extensive and systematic method for evaluating biological effects of gold nanoparticles in mammalian cell lines. METHODS: We establish the cell-impedance measurement system, a label-free, real-time cell monitoring platform that measures electrical impedance, displaying results as cell index values, in a variety of mammalian cell lines. Cytotoxic effects of gold nanoparticles are also evaluated with traditional in vitro assays. RESULTS: Among the six cell lines, gold nanoparticles induce a dose-dependent suppression of cell growth with different levels of severity and the suppressive effect of gold nanoparticles was indirectly associated with their sizes and cellular uptake. Mechanistic studies revealed that the action of gold nanoparticles is mediated by apoptosis induction or cell cycle delay, depending on cell type and cellular context. Although redox signaling is often linked to the toxicity of nanoparticles, in this study, we found that gold nanoparticle-mediated reactive oxygen species generation was not sustained to notably modulate proteins involved in antioxidative defense system. CONCLUSION: The cell-impedance measurement system, a dye-free, real-time screening platform, provides a reliable analysis for monitoring gold nanoparticle cytotoxicity in a variety of mammalian cell lines. Furthermore, gold nanoparticles induce cellular signaling and several sets of gene expression to modulate cellular physical processes. GENERAL SIGNIFICANCE: The systematic approach, such as cell-impedance measurement, analyzing the toxicology of nanomaterials offers convincing evidence of the cytotoxicity of gold nanomaterials.
Assuntos
Ouro/química , Nanopartículas Metálicas/toxicidade , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: MUC16 is a heavily glycosylated cell surface mucin cleaved in the tumor microenvironment to shed CA125. CA125 is a serum biomarker expressed by > 95% of non-mucinous advanced stage epithelial ovarian cancers. MUC16/CA125 contributes to the evasion of anti-tumor immunity, peritoneal spread and promotes carcinogenesis; consequently, it has been targeted with antibody-based passive and active immunotherapy. However, vaccination against this self-antigen likely requires breaking B cell tolerance and may trigger autoimmune disease. Display of self-antigens on virus-like particles (VLPs), including those produced with human papillomavirus (HPV) L1, can efficiently break B cell tolerance. RESULTS: A 20 aa juxta-membrane peptide of the murine MUC16 (mMUC16) or human MUC16 (hMUC16) ectodomain was displayed either via genetic insertion into an immunodominant loop of HPV16 L1-VLPs between residues 136/137, or by chemical coupling using malemide to cysteine sulfhydryl groups on their surface. Female mice were vaccinated intramuscularly three times with either DNA expressing L1-MUC16 fusions via electroporation, or with alum-formulated VLP chemically-coupled to MUC16 peptides. Both regimens were well tolerated, and elicited MUC16-specific serum IgG, although titers were higher in mice vaccinated with MUC16-coupled VLP on alum as compared to L1-MUC16 DNA vaccination. Antibody responses to mMUC16-targeted vaccination cross-reacted with hMUC16 peptide, and vice versa; both were reactive with the surface of CA125+ OVCAR3 cells, but not SKOV3 that lack detectable CA125 expression. Interestingly, vaccination of mice with mMUC16 peptide mixed with VLP and alum elicited mMUC16-specific IgG, implying VLPs provide robust T help and that coupling may not be required to break tolerance to this epitope. CONCLUSION: Vaccination with VLP displaying the 20 aa juxta-membrane MUC16 ectodomain, which includes the membrane proximal cleavage site, is likely to be well tolerated and induce IgG targeting ovarian cancer cells, even after CA125 is shed.
Assuntos
Compostos de Alúmen , Neoplasias Ovarianas , Vacinas de Partículas Semelhantes a Vírus , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/genética , Epitopos , Apoptose , Linhagem Celular Tumoral , Peptídeos , Imunoglobulina G , DNA , Antígeno Ca-125/genética , Microambiente Tumoral , Proteínas de Membrana/genéticaRESUMO
Even with the prolific clinical use of next-generation cancer therapeutics, many tumors remain unresponsive or become refractory to therapy, creating a medical need. In cancer, DCs are indispensable for T cell activation, so there is a restriction on cytotoxic T cell immunity if DCs are not present in sufficient numbers in the tumor and draining lymph nodes to take up and present relevant cancer antigens. To address this bottleneck, we developed a therapeutic based on albumin fused with FMS-related tyrosine kinase 3 ligand (Alb-Flt3L) that demonstrated superior pharmacokinetic properties compared with Flt3L, including significantly longer half-life, accumulation in tumors and lymph nodes, and cross-presenting-DC expansion following a single injection. We demonstrated that Alb-Flt3L, in combination with standard-of-care chemotherapy and radiation therapy, serves as an in situ vaccination strategy capable of engendering polyclonal tumor neoantigen-specific immunity spontaneously. In addition, Alb-Flt3L-mediated tumor control synergized with immune checkpoint blockade delivered as anti-PD-L1. The mechanism of action of Alb-Flt3L treatment revealed a dependency on Batf3, type I IFNs, and plasmacytoid DCs. Finally, the ability of Alb-Flt3L to expand human DCs was explored in humanized mice. We observed significant expansion of human cross-presenting-DC subsets, supporting the notion that Alb-Flt3L could be used clinically to modulate human DC populations in future cancer therapeutic regimens.
Assuntos
Células Dendríticas , Neoplasias , Camundongos , Humanos , Animais , Proteínas de Membrana/metabolismo , Antígenos , Imunoterapia , VacinaçãoRESUMO
Human papillomavirus (HPV) remains a global health concern because it contributes to the initiation of various HPV-associated cancers such as anal, cervical, oropharyngeal, penile, vaginal, and vulvar cancer. In HPV-associated cancers, oncogenesis begins with an HPV infection, which is linked to the activation of the Janus protein tyrosine kinase (JAK)/STAT signaling pathway. Various STAT signaling pathways, such as STAT3 activation, have been well documented for their tumorigenic role, yet the role of STAT1 in tumor formation remains unclear. In the current study, STAT1-/- mice were used to investigate the role of STAT1 in the tumorigenesis of a spontaneous HPV E6/E7-expressing oral tumor model. Subsequently, our candidate HPV DNA vaccine CRT/E7 was administered to determine whether the STAT1-/- host preserves a therapeutic-responsive tumor microenvironment. The results indicated that STAT1-/- induces robust tumorigenesis, yet a controlled tumor response was attained upon CRT/E7 vaccination. Characterizing this treatment effect, immunological analysis found a higher percentage of circulating CD4+ and CD8+ T cells and tumor-specific cytotoxic T cells. In addition, a reduction in exhaustive lymphocyte activity was observed. Further analysis of a whole-cell tumor challenge affirmed these findings, as spontaneous tumor growth was more rapid in STAT1-/- mice. In conclusion, STAT1 deletion accelerates tumorigenesis, but STAT1-/- mice maintains immunocompetency in CRT/E7 treatments.
RESUMO
IMPORTANCE: Respectively, HPV16 and HPV18 cause 50% and 20% of cervical cancer cases globally. Viral proteins E6 and E7 are obligate drivers of oncogenic transformation. We recently developed a candidate therapeutic DNA vaccine, pBI-11, that targets HPV16 and HPV18 E6 and E7. Single-site intramuscular delivery of pBI-11 via a needle elicited therapeutic anti-tumor effects in mice and is now being tested in high-risk human papillomavirus+ head and neck cancer patients (NCT05799144). Needle-free biojectors such as the Tropis device show promise due to ease of administration, high patient acceptability, and the possibility of improved delivery. For example, vaccination of patients with the ZyCoV-D DNA vaccine using the Tropis device is effective against COVID19, well tolerated, and licensed. Here we show that split-dose, multi-site administration and intradermal delivery via the Tropis biojector increase the delivery of pBI-11 DNA vaccine, enhance HPV antigen-specific CD8+ T-cell responses, and improve anti-tumor therapeutic effects, suggesting its translational potential to treat HPV16/18 infection and disease.
Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Vacinas de DNA , Feminino , Humanos , Animais , Camundongos , Papillomavirus Humano 16/genética , Vacinas de DNA/genética , Vacinas de DNA/uso terapêutico , Papillomavirus Humano 18/genética , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Neoplasias do Colo do Útero/prevenção & controle , Infecções por Papillomavirus/prevenção & controle , Vacinação , ImunidadeRESUMO
Dysregulation of pericellular proteolysis is strongly implicated in cancer metastasis through alteration of cell invasion and the microenvironment. Matriptase-2 (MT-2) is a membrane-anchored serine protease which can suppress prostate cancer (PCa) cell invasion. In this study, we showed that MT-2 was down-regulated in PCa and could suppress PCa cell motility, tumor growth, and metastasis. Using microarray and biochemical analysis, we found that MT-2 shifted TGF-ß action towards its tumor suppressor function by repressing epithelial-to-mesenchymal transition (EMT) and promoting Smad2 phosphorylation and nuclear accumulation to upregulate two TGF-ß1 downstream effectors (p21 and PAI-1), culminating in hindrance of PCa cell motility and malignant growth. Mechanistically, MT-2 could dramatically up-regulate the expression of nuclear receptor NR4A3 via iron metabolism in PCa cells. MT-2-induced NR4A3 further coactivated Smad2 to activate p21 and PAI-1 expression. In addition, NR4A3 functioned as a suppressor of PCa and mediated MT-2 signaling to inhibit PCa tumorigenesis and metastasis. These results together indicate that NR4A3 sustains MT-2 signaling to suppress PCa cell invasion, tumor growth, and metastasis, and serves as a contextual factor for the TGF-ß/Smad2 signaling pathway in favor of tumor suppression via promoting p21 and PAI-1 expression.
Assuntos
Proteínas de Ligação a DNA , Proteínas de Membrana , Neoplasias da Próstata , Receptores de Esteroides , Receptores dos Hormônios Tireóideos , Serina Endopeptidases , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Masculino , Proteínas de Membrana/metabolismo , Invasividade Neoplásica , Inibidor 1 de Ativador de Plasminogênio , Próstata/patologia , Neoplasias da Próstata/patologia , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Serina Endopeptidases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente TumoralRESUMO
Current clinical trials of combined EGFR-tyrosine kinase inhibitors (TKI) and immune checkpoint blockade (ICB) therapies show no additional effect. This raises questions regarding whether EGFR-TKIs attenuate ICB-enhanced CD8+ T lymphocyte function. Here we show that the EGFR-TKI afatinib suppresses CD8+ T lymphocyte proliferation, and we identify CAD, a key enzyme of de novo pyrimidine biosynthesis, to be a novel afatinib target. Afatinib reduced tumor-infiltrating lymphocyte numbers in Lewis lung carcinoma (LLC)-bearing mice. Early afatinib treatment inhibited CD8+ T lymphocyte proliferation in patients with non-small cell lung cancer, but their proliferation unexpectedly rebounded following long-term treatment. This suggests a transient immunomodulatory effect of afatinib on CD8+ T lymphocytes. Sequential treatment of afatinib with anti-PD1 immunotherapy substantially enhanced therapeutic efficacy in MC38 and LLC-bearing mice, while simultaneous combination therapy showed only marginal improvement over each single treatment. These results suggest that afatinib can suppress CD8+ T lymphocyte proliferation by targeting CAD, proposing a timing window for combined therapy that may prevent the dampening of ICB efficacy by EGFR-TKIs. SIGNIFICANCE: This study elucidates a mechanism of afatinib-mediated immunosuppression and provides new insights into treatment timing for combined targeted therapy and immunotherapy. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3270/F1.large.jpg.
Assuntos
Afatinib/farmacologia , Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Desoxirribonucleases/antagonistas & inibidores , Agentes de Imunomodulação/farmacologia , Pirimidinas/biossíntese , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Quimioterapia Combinada , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidoresRESUMO
TMPRSS2 is an important membrane-anchored serine protease involved in human prostate cancer progression and metastasis. A serine protease physiologically often comes together with a cognate inhibitor for execution of proteolytically biologic function; however, TMPRSS2's cognate inhibitor is still elusive. To identify the cognate inhibitor of TMPRSS2, in this study, we applied co-immunoprecipitation and LC/MS/MS analysis and isolated hepatocyte growth factor activator inhibitors (HAIs) to be potential inhibitor candidates for TMPRSS2. Moreover, the recombinant HAI-2 proteins exhibited a better inhibitory effect on TMPRSS2 proteolytic activity than HAI-1, and recombinant HAI-2 proteins had a high affinity to form a complex with TMPRSS2. The immunofluorescence images further showed that TMPRSS2 was co-localized to HAI-2. Both KD1 and KD2 domain of HAI-2 showed comparable inhibitory effects on TMPRSS2 proteolytic activity. In addition, HAI-2 overexpression could suppress the induction effect of TMPRSS2 on pro-HGF activation, extracellular matrix degradation and prostate cancer cell invasion. We further determined that the expression levels of TMPRSS2 were inversely correlated with HAI-2 levels during prostate cancer progression. In orthotopic xenograft animal model, TMPRSS2 overexpression promoted prostate cancer metastasis, and HAI-2 overexpression efficiently blocked TMPRSS2-induced metastasis. In summary, the results together indicate that HAI-2 can function as a cognate inhibitor for TMPRSS2 in human prostate cancer cells and may serve as a potential factor to suppress TMPRSS2-mediated malignancy.
Assuntos
Glicoproteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Serina Endopeptidases/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Glicoproteínas de Membrana/química , Invasividade Neoplásica , Neoplasias da Próstata/etiologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , ProteóliseRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Afatinib, used for the first-line treatment of non-small-cell lung carcinoma (NSCLC) patients with distinct epidermal growth factor receptor (EGFR) mutations, inactivates EGFR by mimicking ATP structure and forming a covalent adduct with EGFR. We developed a method to unravel potential targets of afatinib in NSCLC cells through immunoprecipitation of afatinib-labeling proteins with anti-afatinib antiserum and mass spectrometry analysis. Ribonucleotide reductase (RNR) is one of target proteins of afatinib revealed by this method. Treatment of afatinib at 10-100 nM potently inhibited intracellular RNR activity in an in vitro assay using permeabilized PC-9 cells (formerly known as PC-14). PC-9 cells treated with 10 µM afatinib displayed elevated markers of DNA damage. Long-term treatment of therapeutic concentrations of afatinib in PC-9 cells caused significant decrease in protein levels of RNR subunit M2 at 1-10 nM and RNR subunit M1 at 100 nM. EGFR-null Chinese hamster ovary (CHO) cells treated with afatinib also showed similar effects. Afatinib repressed the upregulation of RNR subunit M2 induced by gemcitabine. Covalent modification with afatinib resulting in inhibition and protein downregulation of RNR underscores the therapeutic and off-target effects of afatinib. Afatinib may serve as a lead compound of chemotherapeutic drugs targeting RNR. This method can be widely used in the identification of potential targets of other covalent drugs.
RESUMO
Dysregulation of pericellular proteolysis is often required for tumor invasion and cancer progression. It has been shown that down-regulation of hepatocyte growth factor activator inhibitor-2 (HAI-2) results in activation of matriptase (a membrane-anchored serine protease), human prostate cancer cell motility and tumor growth. In this study, we further characterized if HAI-2 was a cognate inhibitor for matriptase and identified which Kunitz domain of HAI-2 was required for inhibiting matriptase and human prostate cancer cell motility. Our results show that HAI-2 overexpression suppressed matriptase-induced prostate cancer cell motility. We demonstrate that HAI-2 interacts with matriptase on cell surface and inhibits matriptase proteolytic activity. Moreover, cellular HAI-2 harnesses its Kunitz domain 1 (KD1) to inhibit matriptase activation and prostate cancer cell motility although recombinant KD1 and KD2 of HAI-2 both show an inhibitory activity and interaction with matriptase protease domain. The results together indicate that HAI-2 is a cognate inhibitor of matriptase, and KD1 of HAI-2 plays a major role in the inhibition of cellular matritptase activation as well as human prostate cancer invasion.