Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 17104-17113, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645338

RESUMO

This study focuses on modifying the porous structure of acid-treated rice husk ash (ARHA) to enhance the thermal energy storage capacity of poly(ethylene glycol) (PEG) confined within shape-stabilized phase change materials. The modification process involved a cost-effective sol-gel method in which ARHA was initially dissolved in an alkaline solution and subsequently precipitated in an acidic environment. ARHA, being a mesoporous SiO2-based material with a high surface area but low pore volume, had limited capacity to adsorb PEG (50%). Furthermore, it hindered the crystallinity of impregnated PEG by fostering abundant interfacial hydrogen bonds (H-bonds), resulting in a diminished thermal energy storage efficiency. Following modification of the porous structure, the resulting material, termed mARHA, featured a three-dimensional macroporous network, providing ample space to stabilize a significant amount of PEG (70%) without any leakage. Notably, mARHA, with a reduced surface area, effectively mitigated interfacial H-bonds, consequently enhancing the crystallinity of impregnated PEG. This modification led to the recovery of thermal energy storage efficacy from 0 J/g for PEG/ARHA to 109.3 J/g for PEG/mARHA. Additionally, the PEG/mARHA composite displayed improved thermal conductivity, reliable thermal performance, and effective thermal management when used as construction materials. This work introduces a straightforward and economical strategy for revitalizing thermal energy storage in PEG composites confined within RHA-based porous supports, offering promising prospects for large-scale applications in building energy conservation.

2.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732665

RESUMO

This study synthesized and modified a semi-interpenetrating polymer network hydrogel from polyacrylamide, N,N'-dimethylacrylamide, and maleic acid in a potassium hydroxide solution. The chemical composition, interior morphology, thermal properties, mechanical characteristics, and swelling behaviors of the initial hydrogel (SH) and modified hydrogel (SB) in water, salt solutions, and buffer solutions were investigated. Hydrogels were used as phosphate fertilizer (PF) carriers and applied in farming techniques by evaluating their impact on soil properties and the growth of mustard greens. Fourier-transform infrared spectra confirmed the chemical composition of SH, SB, and PF-adsorbed hydrogels. Scanning electron microscopy images revealed that modification increased the largest pore size from 817 to 1513 µm for SH and SB hydrogels, respectively. After modification, the hydrogels had positive changes in the swelling ratio, swelling kinetics, thermal properties, mechanical and rheological properties, PF absorption, and PF release. The modification also increased the maximum amount of PF loaded into the hydrogel from 710.8 mg/g to 770.9 mg/g, while the maximum % release of PF slightly increased from 84.42% to 85.80%. In addition, to evaluate the PF release mechanism and the factors that influence this process, four kinetic models were applied to confirm the best-fit model, which included zero-order, first-order, Higuchi, and Korsmeyer-Peppas. In addition, after six cycles of absorption and release in the soil, the hydrogels retained their original shapes, causing no alkalinization or acidification. At the same time, the moisture content was higher as SB was used. Finally, modifying the hydrogel increased the mustard greens' lifespan from 20 to 32 days. These results showed the potential applications of modified semi-IPN hydrogel materials in cultivation.

3.
Polymers (Basel) ; 12(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429371

RESUMO

A series of semi-interpenetrating polymer network (semi-IPN) hydrogels based on N,N'-diethylacrylamide (DEA) and itaconamic acid (IAM) were synthesized by changing the molar ratio of linear copolymer P(DEA-co-IAM) and DEA monomer. Linear copolymer P(DEA-co-IAM) was introduced into a solution of DEA monomer to prepare pH-thermo dual responsive P(DEA-co-IAM)/PDEA semi-IPN hydrogels. The thermal gravimetric analysis (TGA) revealed that the semi-IPN hydrogel has a higher thermal stability than the conventional hydrogel, while the interior morphology by scanning electron microscopy (SEM) showed a porous structure with the pore sizes could be controlled by changing the ratio of linear copolymer in the obtained hydrogels. The oscillatory parallel-plate rheological measurements and compression tests demonstrated a viscoelastic behavior and superior mechanical properties of the semi-IPN hydrogels. Besides, the lower critical solution temperature (LCST) of the linear copolymers increased with the increase of IAM content in the feed, while the semi-IPN hydrogels increased LCSTs with the increase of linear copolymer content introduced. The pH-thermo dual responsive of the hydrogels was investigated using the swelling behavior in various pH and temperature conditions. Finally, the swelling and deswelling rate of the hydrogels were also studied. The results indicated that the pH-thermo dual responsive semi-IPN hydrogels were synthesized successfully and may be a potential material for biomedical, drug delivery or absorption applications. The further applications of semi-IPN hydrogels are being conducted.

4.
Materials (Basel) ; 11(5)2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29710793

RESUMO

A series of semi-interpenetrating polymer network (semi-IPN) hydrogels were synthesized and investigated in this study. Linear copolymer poly(N-isopropylacrylamide-co-itaconamic acid) p(NIPAM-co-IAM), which is formed by copolymerization of N-isopropylacrylamide (NIPAM) and itaconamic acid (IAM, 4-amino-2-ethylene-4-oxobutanoic acid), was introduced into a solution of NIPAM to form a series of pH and thermo dual-responsive p(NIPAM-co-IAM)/pNIPAM semi-IPN hydrogels by free radical polymerization. The structural, morphological, chemical, and physical properties of the linear copolymer and semi-IPN hydrogels were investigated. The semi-IPN hydrogel showed high thermal stability according to thermal gravimetric analyzer (TGA). Scanning electronic microscopy (SEM) images showed that the pore size was in the range of 119~297 µm and could be controlled by the addition ratio of the linear copolymer in the semi-IPN structure. The addition of linear copolymer increased the fracture strain from 57.5 ± 2.9% to 91.1 ± 4.9% depending on the added amount, while the compressive modulus decreased as the addition increased. Moreover, the pH and thermo dual-responsive properties were investigated using differential scanning calorimetry (DSC) and monitoring the swelling behavior of the hydrogels. In deionized (DI) water, the equilibrium swelling ratio of the hydrogels decreased as the temperature increased from 20 °C to 50 °C, while it varied in various pH buffer solutions. In addition, the swelling and deswelling rates of the hydrogels also significantly increased. The results indicate that the novel pH-thermo dual-responsive semi-IPN hydrogels were synthesized successfully and may be a potential material for biomedical, drug delivery, or absorption application.

5.
Polymers (Basel) ; 10(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966546

RESUMO

In this work, a smart copolymer, Poly(nipam-co-IAM) was synthesized by copolymerization of N-isopropylacrylamide (nipam) and itaconamic acid (IAM) through reversible addition-fragmentation chain-transfer (RAFT) polymerization. Poly(nipam-co-IAM) has been studied previously synthesized via radical polymerization without stereo-control, and this work used cumyl dithiobenzoate and Ytterbium(III) trifluoromethanesulfonate as RAFT and stereo-control agents, respectively. The stereo-control result in this work shows that tacticity affects the lower critical solution temperature (LCST) and/or the profile of phase separation of Poly(nipam-co-IAM). In the pH 7 and pH 10 buffer solutions, the P(nipam-co-IAM) copolymer solutions showed soluble⁻insoluble⁻soluble transitions, i.e., both LCST and upper critical solution temperature (UCST) transitions, which had not been found previously, and the insoluble to soluble transition (redissolved behavior) occurred at a relatively low temperature. The insoluble to soluble transition of P(nipam-co-IAM) in alkaline solution occurred at a temperature of less than 45 °C. However, the redissolved behavior of P(nipam-co-IAM) was found only in the pH 7 and pH 10 buffer solutions and this redissolved behavior was more prominent for the atactic copolymers than in the isotactic-rich ones. In addition, the LCST results under our experimental range of meso content did not show a significant difference between the isotactic-rich and the atactic P(nipam-co-IAM). Further study on the soluble-insoluble-soluble (S-I-S) transition and the application thereof for P(nipam-co-IAM) copolymers will be conducted.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa