Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Genes Dev ; 35(17-18): 1290-1303, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34385261

RESUMO

Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 65(5): 775-776, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257696

RESUMO

In this issue of Molecular Cell, Bresson et al. (2017) show that the nuclear RNA decay factors Nab3 and Mtr4 reshape the coding transcriptome during glucose starvation in budding yeast, placing nuclear mRNA metabolism as an important contributor of gene expression regulation.


Assuntos
RNA Mensageiro , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Nucleares/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Radioatividade , Saccharomyces cerevisiae/genética
3.
EMBO J ; 39(7): e101548, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107786

RESUMO

Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a threat to proper gene expression that needs to be controlled. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here, we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II, and structurally characterize its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires CTD recognition by the N-terminal domain of Sen1. We provide evidence that the Sen1-CTD interaction does not promote initial Sen1 recruitment, but rather enhances Sen1 capacity to induce the release of paused RNAPII from the DNA. Our results shed light on the network of protein-protein interactions that control termination of non-coding transcription by Sen1.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , RNA Polimerase II/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética
4.
Nucleic Acids Res ; 50(22): e132, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36259646

RESUMO

Analysis of the protein coding transcriptome by the RNA sequencing requires either enrichment of the desired fraction of coding transcripts or depletion of the abundant non-coding fraction consisting mainly of rRNA. We propose an alternative mRNA enrichment strategy based on the RNA-binding properties of the human IFIT1, an antiviral protein recognizing cap 0 RNA. Here, we compare for Saccharomyces cerevisiae an IFIT1-based mRNA pull-down with yeast targeted rRNA depletion by the RiboMinus method. IFIT1-based RNA capture depletes rRNA more effectively, producing high quality RNA-seq data with an excellent coverage of the protein coding transcriptome, while depleting cap-less transcripts such as mitochondrial or some non-coding RNAs. We propose IFIT1 as a cost effective and versatile tool to prepare mRNA libraries for a variety of organisms with cap 0 mRNA ends, including diverse plants, fungi and eukaryotic microbes.


Assuntos
Saccharomyces cerevisiae , Transcriptoma , Humanos , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Capuzes de RNA , RNA Ribossômico/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA/métodos
5.
Mol Cell ; 55(3): 467-81, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25066235

RESUMO

The Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts. The Trf4-Air2-Mtr4 (TRAMP) complex polyadenylates NNS target RNAs and favors their degradation. NNS-dependent termination and degradation are coupled, but the mechanism underlying this coupling remains enigmatic. Here we provide structural and functional evidence demonstrating that the same domain of Nrd1p interacts with RNA polymerase II and Trf4p in a mutually exclusive manner, thus defining two alternative forms of the NNS complex, one involved in termination and the other in degradation. We show that the Nrd1-Trf4 interaction is required for optimal exosome activity in vivo and for the stimulation of polyadenylation of NNS targets by TRAMP in vitro. We propose that transcription termination and RNA degradation are coordinated by switching between two alternative partners of the NNS complex.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Sítios de Ligação , DNA Polimerase Dirigida por DNA/química , Exossomos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Poliadenilação , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo
6.
Curr Genet ; 65(2): 473-476, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30515529

RESUMO

In this perspective, we discuss the regulatory impact of nuclear RNA export and decay on messenger RNA (mRNA) functionality. It is well established that control of protein-coding gene expression in eukaryotes employs the regulated production of mRNA, its intra-cellular transfer to cytoplasmic ribosomes and final transcript degradation. Despite a rich body of literature on these events, an involvement of nuclear RNA decay systems remains largely unexplored. Instead, nuclear RNA degradation is often considered a quality control precaution engaged primarily in ridding cells of aberrantly processed transcripts and spurious non-coding RNA. Recent research from human and budding yeast cells, however, demonstrates that even protein-coding transcripts fall prey to nuclear decay and that this is countered by their nuclear export. Here, we outline the potential of nuclear polyA-binding proteins in tuning levels of cellular mRNA to maintain transcript homeostasis.


Assuntos
Núcleo Celular/genética , Estabilidade de RNA , RNA Mensageiro/genética , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Homeostase , Humanos , Cinética , Proteínas de Ligação a Poli(A)/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo
7.
Environ Microbiol ; 19(11): 4536-4550, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28856785

RESUMO

Plasmids play an important role in the adaptation of bacteria to changeable environmental conditions. As the main vectors of horizontal gene transfer, they can spread genetic information among bacteria, sometimes even across taxonomic boundaries. Some plasmids carry genes involved in the utilization of particular carbon compounds, which can provide a competitive advantage to their hosts in particular ecological niches. Analysis of the multireplicon genome of the soil bacterium P. aminovorans JCM 7685 revealed the presence of an extrachromosomal replicon pAMV1 (185 kb) with a unique structure and properties. This lifestyle-determining plasmid carries genes facilitating the metabolism of many different carbon compounds including sugars, short-chain organic acids and C1 compounds. Plasmid pAMV1 contains a large methylotrophy island (MEI) that is essential not only for the utilization of particular C1 compounds but also for the central methylotrophic metabolism required for the assimilation of C1 units (serine cycle). We demonstrate that the expression of the main serine cycle genes is induced in the presence of C1 compounds by the transcriptional regulator ScyR. The extrachromosomal localization of the MEI and the distribution of related genes in Paracoccus spp. indicate that it could have been acquired by HGT by an ancestor of P. aminovorans.


Assuntos
Carbono/metabolismo , Paracoccus/genética , Paracoccus/metabolismo , Plasmídeos/genética , Replicon/genética , Regulação Bacteriana da Expressão Gênica/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética
8.
Wiley Interdiscip Rev RNA ; 14(6): e1795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384835

RESUMO

RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo , Exossomos , Humanos , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Antivirais
9.
Nat Commun ; 12(1): 4951, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400637

RESUMO

The polyadenosine tail (poly[A]-tail) is a universal modification of eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). In budding yeast, Pap1-synthesized mRNA poly(A) tails enhance export and translation, whereas Trf4/5-mediated polyadenylation of ncRNAs facilitates degradation by the exosome. Using direct RNA sequencing, we decipher the extent of poly(A) tail dynamics in yeast defective in all relevant exonucleases, deadenylases, and poly(A) polymerases. Predominantly ncRNA poly(A) tails are 20-60 adenosines long. Poly(A) tails of newly transcribed mRNAs are 50 adenosine long on average, with an upper limit of 200. Exonucleolysis by Trf5-assisted nuclear exosome and cytoplasmic deadenylases trim the tails to 40 adenosines on average. Surprisingly, PAN2/3 and CCR4-NOT deadenylase complexes have a large pool of non-overlapping substrates mainly defined by expression level. Finally, we demonstrate that mRNA poly(A) tail length strongly responds to growth conditions, such as heat and nutrient deprivation.


Assuntos
Poli A/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Exossomos/metabolismo , Poliadenilação , Polinucleotídeo Adenililtransferase/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-32265045

RESUMO

Professor Barbara Tudek received the Frits Sobels Award in 2019 from the European Environmental Mutagenesis and Genomics Society (EEMGS). This article presents her outstanding character and most important lines of research. The focus of her studies covered alkylative and oxidative damage to DNA bases, in particular mutagenic and carcinogenic properties of purines with an open imidazole ring and 8-oxo-7,8-dihydroguanine (8-oxoGua). They also included analysis of mutagenic properties and pathways for the repair of DNA adducts of lipid peroxidation (LPO) products arising in large quantities during inflammation. Professor Tudek did all of this in the hope of deciphering the mechanisms of DNA damage removal, in particular by the base excision repair (BER) pathway. Some lines of research aimed at discovering factors that can modulate the activity of DNA damage repair in hope to enhance existing anti-cancer therapies. The group's ongoing research aims at deciphering the resistance mechanisms of cancer cell lines acquired following prolonged exposure to photodynamic therapy (PDT) and the possibility of re-sensitizing cells to PDT in order to increase the application of this minimally invasive therapeutic method.


Assuntos
Carcinogênese/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Neoplasias/história , Fotoquimioterapia/história , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Guanina/metabolismo , História do Século XX , História do Século XXI , Humanos , Peroxidação de Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fotoquimioterapia/métodos
11.
Bio Protoc ; 9(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30931349

RESUMO

Cellular RNA levels are determined by the rates of RNA transcription from the gene template and subsequent RNA stability. Knowledge about both transcription and RNA decay is, therefore, necessary to interpret RNA levels and gene expression, especially during cellular processes where these parameters change. Numerous experimental strategies have been developed to measure transcription and RNA decay rates. However, to our knowledge, none of those techniques can simultaneously interrogate transcription and RNA decay. The presented protocol allows this and provides a simple approach to simultaneously estimate total RNA levels, transcription and decay rates from the same RNA sample. It is based on brief metabolic labeling of RNA and subsequent concurrent sequencing of polyA+ and polyA- RNA 3' ends. The protocol was developed in S. cerevisiae and should be broadly applicable.

12.
Cell Rep ; 24(9): 2468-2478.e4, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157438

RESUMO

Cellular RNA levels are determined by transcription and decay rates, which are fundamental in understanding gene expression regulation. Measurement of these two parameters is usually performed independently, complicating analysis as well as introducing methodological biases and batch effects that hamper direct comparison. Here, we present a simple approach of concurrent sequencing of S. cerevisiae poly(A)+ and poly(A)- RNA 3' ends to simultaneously estimate total RNA levels, transcription, and decay rates from the same RNA sample. The transcription data generated correlate well with reported estimates and also reveal local RNA polymerase stalling and termination sites with high precision. Although the method by design uses brief metabolic labeling of newly synthesized RNA with 4-thiouracil, the results demonstrate that transcription estimates can also be gained from unlabeled RNA samples. These findings underscore the potential of the approach, which should be generally applicable to study a range of biological questions in diverse organisms.


Assuntos
Processamento Pós-Transcricional do RNA/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA/métodos , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-30397105

RESUMO

A polyA (pA) tail is an essential modification added to the 3' ends of a wide range of RNAs at different stages of their metabolism. Here, we describe the main sources of polyadenylation and outline their underlying biochemical interactions within the nuclei of budding yeast Saccharomyces cerevisiae, human cells and, when relevant, the fission yeast Schizosaccharomyces pombe Polyadenylation mediated by the S. cerevisiae Trf4/5 enzymes, and their human homologues PAPD5/7, typically leads to the 3'-end trimming or complete decay of non-coding RNAs. By contrast, the primary function of canonical pA polymerases (PAPs) is to produce stable and nuclear export-competent mRNAs. However, this dichotomy is becoming increasingly blurred, at least in S. pombe and human cells, where polyadenylation mediated by canonical PAPs may also result in transcript decay.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Assuntos
Poliadenilação , RNA Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
14.
Cell Rep ; 24(9): 2457-2467.e7, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157437

RESUMO

Genomes are promiscuously transcribed, necessitating mechanisms that facilitate the sorting of RNA for function or destruction. The polyA (pA) tail is one such distinguishing feature, which in the Saccharomyces cerevisiae nucleus is bound by the Nab2p protein, yielding transcript protection. As Nab2p also contacts the main nuclear export factor Mex67p, we asked whether transport kinetics contributes to RNA sorting. Indeed, 3' end sequencing of newly transcribed pA+ RNAs demonstrates that nuclear depletion of Mex67p elicits their instant and global decay. A similar phenotype is evident upon inactivation of other export factors and proportional to the amount of nuclear pA+ RNA. As RNA expression is partially rescued by Nab2p overexpression, we propose that an export block out-titrates Nab2p onto nuclear-retained pA+ RNA, reducing the pool of Nab2p available to protect new transcripts. More generally, we suggest that nuclear RNA decay, negotiated by Nab2p availability, aids in balancing cellular transcript supply with demand.


Assuntos
Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos
15.
Free Radic Biol Med ; 107: 77-89, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27908783

RESUMO

Exocyclic adducts to DNA bases are formed as a consequence of exposure to certain environmental carcinogens as well as inflammation and lipid peroxidation (LPO). Complex family of LPO products gives rise to a variety of DNA adducts, which can be grouped in two classes: (i) small etheno-type adducts of strong mutagenic potential, and (ii) bulky, propano-type adducts, which block replication and transcription, and are lethal lesions. Etheno-DNA adducts are removed from the DNA by base excision repair (BER), AlkB and nucleotide incision repair enzymes (NIR), while substituted propano-type lesions by nucleotide excision repair (NER) and homologous recombination (HR). Changes of the level and activity of several enzymes removing exocyclic adducts from the DNA was reported during carcinogenesis. Also several beyond repair functions of these enzymes, which participate in regulation of cell proliferation and growth, as well as RNA processing was recently described. In addition, adducts of LPO products to proteins was reported during aging and age-related diseases. The paper summarizes pathways for exocyclic adducts removal and describes how proteins involved in repair of these adducts can modify pathological states of the organism.


Assuntos
Adutos de DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Peroxidação de Lipídeos , Envelhecimento , Animais , Carcinogênese , Adutos de DNA/química , Recombinação Homóloga , Humanos , Mutagênese , Oxirredução
16.
Biochimie ; 117: 28-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25956976

RESUMO

Recent developments of microarrays and deep sequencing techniques have unveiled an unexpected complexity of the eukaryotic transcriptome, demonstrating that virtualy the entire genome is transcribed by RNA polymerase II (RNAPII). Transcription occurring outside of annotated regions is generally referred to as pervasive transcription and leads to the production of several classes of non-coding RNAs (ncRNAs). In this review we will discuss the metabolism and functional significance of these ncRNAs in the yeast Saccharomyces cerevisiae. We will discuss the mechanisms that the cell has adopted to prevent potentially disruptive interference between pervasive transcription and the expression of canonical genes. We will explore the possible reasons that justify the evolutionary conserved maintenance of extensive genomic transcription.


Assuntos
RNA Polimerase II/metabolismo , RNA não Traduzido/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Modelos Genéticos , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
17.
PLoS One ; 8(12): e80495, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324601

RESUMO

Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , DNA Helicases/genética , DNA Helicases/metabolismo , Perfilação da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
PLoS One ; 7(2): e32277, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359677

RESUMO

Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution.


Assuntos
Alphaproteobacteria/genética , Elementos de DNA Transponíveis/fisiologia , Paracoccus/genética , Evolução Biológica , Transferência Genética Horizontal , Genes Bacterianos , Plasmídeos/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa