Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Inorg Chem ; 63(24): 11194-11208, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38836300

RESUMO

A series of luminescent binuclear ([dppm{Pt(NNC)}2]2+) and mononuclear ([PPh3Pt(NNC)]+) complexes containing pincer ligands were synthesized and characterized. Photophysical characteristics of both types of complexes were studied in dichloromethane solution. In the solid phase, the binuclear compounds adopt a syn configuration where the {Pt(NNC)} fragments are held together due to intramolecular Pt-Pt bonding and π-stacking of the pincer ligand aromatic systems. Analysis of the complexes' molecular structure in solution by multinuclear NMR spectroscopy showed that the stacked intramolecular configuration is retained in fluid media, which is in complete agreement with a considerable red shift of the emission wavelength due to formation of the intramolecular Pt-Pt bond, leading to the transformation of an emissive excited state to 3MMLCT. It was also found that triethylamine quenches the emission of both types of complexes; the mechanism of quenching is a combination of dynamic and static channels of excited-state deactivation. In the case of binuclear complexes, deprotonation of the dppm methylene bridge by triethylamine also contributes to the chromophore quenching. To explain the observed chemistry of binuclear complex interactions with Et3N, a chemical equilibrium scheme was suggested, which was confirmed by quantitative monitoring of the 31P signal variations as a function of triethylamine concentration.

2.
Inorg Chem ; 62(45): 18625-18640, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37919252

RESUMO

Binuclear transition-metal complexes based on conjugated systems containing coordinating functions are potentially suitable for a wide range of applications, including light-emitting materials, sensors, light-harvesting systems, photocatalysts, etc., due to energy-transfer processes between chromophore centers. Herein we report on the synthesis, characterization, photophysical, and theoretical studies of relatively rare rhenium(I) and rhenium(I)-iridium(III) dyads prepared by using the nonsymmetrical polytopic ligands (NN2 and NN3) with the strongly conjugated phenanthroline and imidazole-quinoline/pyridine coordinating fragments. Availability of these different diimine chelating functions and targeted synthetic procedures allowed one to obtain a series of mononuclear (Re and Ir) and binuclear (Re-Re and Re-Ir) metal complexes with various modes of {Re(CO)3Cl} and {Ir(NC)2} metal fragment coordination. The obtained compounds were characterized by 1D 1H and 2D (COSY and NOESY) NMR spectroscopy, mass spectrometry, elemental analysis, and X-ray diffraction crystallography. The photophysical study of the complexes (absorption, excitation and emission spectra, quantum yields, and excited-state lifetimes) showed that their emission parameters display strong dependence on the manner of metal center coordination to the diimine bidentate functions. The mononuclear complexes with an unoccupied imidazole-quinoline/pyridine fragment [Re(NN2), Re(NN3), and Ir(NC2)2(NN2)] or those containing a coordinated {Ir(NC)2} fragment in this position [Ir(NC2)2(NN1) and Re(NN2)Ir(NC1)2-Re(NN2)Ir(NC4)2] exhibit moderate-to-intense phosphorescence (quantum yields vary from 3% to 56% in a degassed solution), whereas the complexes containing a {Re(CO)3Cl} moiety in the imidazole-quinoline/pyridine position [Re2(NN2), Re2(NN3), and Ir(NC2)2(NN2)Re] demonstrate a strong reduction in the phosphorescence efficiency with a quantum yield of ≪0.1%. Quenching of the phosphorescence in the latter types of emitters is discussed in terms of a strong decrease in the radiative rate constants for these complexes compared to their analogues mentioned above, while the nonradiative constants remain nearly unchanged. Theoretical density functional theory (DFT) and time-dependent DFT (TD DFT) calculations, including evaluation of the radiative rate constants for the couple of structurally analogous complexes with and without a {Re(CO)3Cl} moiety coordinated to the imidazole-quinoline/pyridine chelating function, confirmed the observed trend in the variation of the emission intensity.

3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958592

RESUMO

The oxygenation of cells and tissues and acidification of the cellular endolysosomal system are among the major factors that ensure normal functioning of an organism and are violated in various pathologies. Recording of these parameters and their changes under various conditions is an important task for both basic research and clinical applications. In the present work, we utilized internalizable dual pH/O2 lifetime sensor (Ir-HSA-FITC) based on the covalent conjugation of human serum albumin (HSA) with fluorescein isothiocyanate (FITC) as pH sensor and an orthometalated iridium complex as O2 sensor. The probe was tested for simultaneous detection of acidification level and oxygen concentration in endolysosomes of endometrial mesenchymal stem/stromal cells (enMSCs) cultivated as 2D monolayers and 3D spheroids. Using a combined FLIM/PLIM approach, we found that due to high autofluorescence of enMSCs FITC lifetime signal in control cells was insufficient to estimate pH changes. However, using flow cytometry and confocal microscopy, we managed to detect the FITC signal response to inhibition of endolysosomal acidification by Bafilomycin A1. The iridium chromophore phosphorescence was detected reliably by all methods used. It was demonstrated that the sensor, accumulated in endolysosomes for 24 h, disappeared from proliferating 2D enMSCs by 72 h, but can still be recorded in non-proliferating spheroids. PLIM showed high sensitivity and responsiveness of iridium chromophore phosphorescence to experimental hypoxia both in 2D and 3D cultures. In spheroids, the phosphorescence signal was detected at a depth of up to 60 µm using PLIM and showed a gradient in the intracellular O2 level towards their center.


Assuntos
Luminescência , Células-Tronco Mesenquimais , Humanos , Irídio/química , Fluoresceína-5-Isotiocianato , Oxigênio , Concentração de Íons de Hidrogênio
4.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985710

RESUMO

A series of bis-metalated phosphorescent [(N^C)2Ir(bipyridine)]+ complexes with systematic variations in the structure and electronic characteristics of the N^C ligands were synthesized and characterized by using elemental analysis, mass spectrometry, NMR spectroscopy and X-ray crystallography. Investigation of the complexes' spectroscopic properties together with DFT and TD DFT calculations revealed that metal-to-ligand charge transfer (MLCT) and intraligand (LC) transition play key roles in the generation of emissive triplet states. According to the results of theoretical studies, the 3LC excited state is more accurate to consider as an intraligand charge transfer process (ILCT) between N- and C-coordinated moieties of the N^C chelate. This hypothesis is completely in line with the trends observed in the experimental absorption and emission spectra, which display systematic bathochromic shifts upon insertion of electron-withdrawing substituents into the N-coordinated fragment. An analogous shift is induced by expansion of the aromatic system of the C-coordinated fragment and insertion of polarizable sulfur atoms into the aromatic rings. These experimental and theoretical findings extend the knowledge of the nature of photophysical processes in complexes of this type and provide useful instruments for fine-tuning of their emissive characteristics.

5.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615546

RESUMO

A series of diphosphine Re(I) complexes Re1-Re4 have been designed via decoration of the archetypal core {Re(CO)2(N^N)} through the installations of the phosphines P0 and P1 bearing the terminal double bond, where N^N = 2,2'-bipyridine (N^N1), 4,4'-di-tert-butyl-2,2'-bipyridine (N^N2) or 2,9-dimethyl-1,10-phenanthroline (N^N3) and P0 = diphenylvinylphosphine, and P1 = 4-(diphenylphosphino)styrene. These complexes were copolymerized with the corresponding N-vinylpyrrolidone-based Macro-RAFT agents of different polymer chain lengths to give water-soluble copolymers of low-molecular p(VP-l-Re) and high-molecular p(VP-h-Re) block-copolymers containing rhenium complexes. Compounds Re1-Re4, as well as the copolymers p(VP-l-Re) and p(VP-h-Re), demonstrate phosphorescence from a 3MLCT excited state typical for this type of chromophores. The copolymers p(VP-l-Re#) and p(VP-h-Re#) display weak sensitivity to molecular oxygen in aqueous and buffered media, which becomes almost negligible in the model physiological media. In cell experiments with CHO-K1 cell line, p(VP-l-Re2) and p(VP-h-Re2) displayed significantly reduced toxicity compared to the initial Re2 complex and internalized into cells presumably by endocytic pathways, being eventually accumulated in endosomes. The sensitivity of the copolymers to oxygen examined in CHO-K1 cells via phosphorescence lifetime imaging microscopy (PLIM) proved to be inessential.


Assuntos
Povidona , Rênio , Cricetinae , Animais , Rênio/química , Solubilidade , 2,2'-Dipiridil , Polímeros/química , Células CHO , Água/química , Oxigênio
6.
Chemistry ; 28(64): e202203341, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36347631

RESUMO

Invited for the cover of this issue are the groups of Sergey P. Tunik and his colleagues from St Petersburg University. The image depicts the strong bathochromic shift of the emission wavelength of phosphorescent platinum(II) complexes upon their aggregation in the presence of water. Read the full text of the article at 10.1002/chem.202202207.

7.
Chemistry ; 28(64): e202202207, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36307898

RESUMO

Five square-planar [Pt(C^N*N'^C')] complexes (Pt1-Pt5) with novel nonsymmetric tetradentate ligands (L1-L5) were synthesized and characterized. Varying the structure of the metalating aromatic systems result in substantial changes in photophysical properties and intermolecular interaction mode of the complexes in solution and in solid state. The complexes are strongly emissive in tetrahydrofuran solution, with the band maxima ranging from 560 to 690 nm. Three of these complexes (Pt1, Pt2, Pt4) afford nanospecies upon injection of their solution into water, which show aggregation-induced emission (AIE) with a strong red shift of emission bands. In the solid state, crystalline samples of these complexes demonstrate mechanochromism upon grinding with a bathochromic shift of the emission. DFT and TD-DFT computational analysis of monomeric Pt1-Pt5 in solution and model dimeric emitters formed through intermolecular interaction of Pt1, Pt2, Pt4 molecules allowed assignment of observed AIE to the 3 MMLCT excited states of Pt-Pt bonded aggregates of these complexes.

8.
Molecules ; 27(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630633

RESUMO

A series of [Ir(N^C)2(N^N)]+ NIR-emitting orthometalated complexes (1-7) has been prepared and structurally characterized using elemental analysis, mass-spectrometry, and NMR spectroscopy. The complexes display intense phosphorescence with vibrationally structured emission bands exhibiting the maxima in the range 713-722 nm. The DFT and TD DFT calculations showed that the photophysical characteristics of these complexes are largely determined by the properties of the metalating N^C ligands, with their major contribution into formation of the lowest S1 and T1 excited states responsible for low energy absorption and emission, respectively. Emission lifetimes of 1-7 in degassed methanol solution vary from 1.76 to 5.39 µs and show strong quenching with molecular oxygen to provide an order of magnitude lifetime reduction in aerated solution. The photophysics of two complexes (1 and 7) were studied in model physiological media containing fetal bovine serum (FBS) and Dulbecco's Modified Eagle Medium (DMEM) to give linear Stern-Volmer calibrations with substantially lower oxygen-quenching constants compared to those obtained in methanol solution. These observations were interpreted in terms of the sensors' interaction with albumin, which is an abundant component of FBS and cell media. The studied complexes displayed acceptable cytotoxicity and preferential localization, either in mitochondria (1) or in lysosomes (7) of the CHO-K1 cell line. The results of the phosphorescence lifetime imaging (PLIM) experiments demonstrated considerable variations of the sensors' lifetimes under normoxia and hypoxia conditions and indicated their applicability for semi-quantitative measurements of oxygen concentration in living cells. The complexes' emission in the NIR domain and the excitation spectrum, extending down to ca. 600 nm, also showed that they are promising for use in in vivo studies.


Assuntos
Metanol , Radiação , Ligantes , Espectroscopia de Ressonância Magnética , Oxigênio
9.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557943

RESUMO

Three novel luminescent Eu(III) complexes, Eu1-Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from 18.3 to 31.6%, excited-state lifetimes in the range of 243-1016 ms at 20 °C, and lifetime temperature sensitivity of 0.9%/K (Eu1), 1.9%/K (Eu2), and 1.7%/K (Eu3). The chromophores were embedded into biocompatible latex nanoparticles (NPs_Eu1-NPs_Eu3) that prevented emission quenching and kept the photophysical characteristics of emitters unchanged with the highest temperature sensitivity of 1.3%/K (NPs_Eu2). For this probe cytotoxicity, internalization dynamics and localization in CHO-K1 cells were studied together with lifetime vs. temperature calibration in aqueous solution, phosphate buffer, and in a mixture of growth media and fetal bovine serum. The obtained data were then averaged to give the calibration curve, which was further used for temperature estimation in biological samples. The probe was stable in physiological media and displayed good reproducibility in cycling experiments between 20 and 40 °C. PLIM experiments with thermostated CHO-K1 cells incubated with NPs_Eu2 indicated that the probe could be used for temperature estimation in cells including the assessment of temperature variations upon chemical shock (sample treatment with mitochondrial uncoupling reagent).


Assuntos
Európio , Nanopartículas , Európio/química , Sondas Moleculares , Temperatura , Reprodutibilidade dos Testes
10.
Chemistry ; 27(5): 1787-1794, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32970903

RESUMO

Luminescent cyclometalated complexes [M(C^N^N)CN] (M=Pt, Pd; HC^N^N=pyridinyl- (M=Pt 1, Pd 5), benzyltriazolyl- (M=Pt 2), indazolyl- (M=Pt 3, Pd 6), pyrazolyl-phenylpyridine (M=Pt 4)) decorated with cyanide ligand, have been explored as nucleophilic building blocks for the construction of halogen-bonded (XB) adducts using IC6 F5 as an XB donor. The negative electrostatic potential of the CN group afforded CN⋅⋅⋅I noncovalent interactions for platinum complexes 1-3; the energies of XB contacts are comparable to those of metallophilic bonding according to QTAIM analysis. Embedding the chromophore units into XB adducts 1-3⋅⋅⋅IC6 F5 has little effect on the charge distribution, but strongly affects Pt⋅⋅⋅Pt bonding and π-stacking, which lead to excited states of MMLCT (metal-metal-to-ligand charge transfer) origin. The energies of these states and the photoemissive properties of the crystalline materials are primarily determined by the degree of aggregation of the luminophores via metal-metal interactions. The adduct formation depends on the nature of the metal and the structure of the metalated ligand, the variation of which can yield dynamic XB-supported systems, exemplified by thermally regulated transition 3↔3⋅⋅⋅IC6 F5 .

11.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011464

RESUMO

Herein we report four [Ir(N^C)2(L^L)]n+, n = 0,1 complexes (1-4) containing cyclometallated N^C ligand (N^CH = 1-phenyl-2-(4-(pyridin-2-yl)phenyl)-1H-phenanthro[9,10-d]imidazole) and various bidentate L^L ligands (picolinic acid (1), 2,2'-bipyridine (2), [2,2'-bipyridine]-4,4'-dicarboxylic acid (3), and sodium 4,4',4″,4‴-(1,2-phenylenebis(phosphanetriyl))tetrabenzenesulfonate (4). The N^CH ligand precursor and iridium complexes 1-4 were synthesized in good yield and characterized using chemical analysis, ESI mass spectrometry, and NMR spectroscopy. The solid-state structure of 2 was also determined by XRD analysis. The complexes display moderate to strong phosphorescence in the 550-670 nm range with the quantum yields up to 30% and lifetimes of the excited state up to 60 µs in deoxygenated solution. Emission properties of 1-4 and N^CH are strongly pH-dependent to give considerable variations in excitation and emission profiles accompanied by changes in emission efficiency and dynamics of the excited state. Density functional theory (DFT) and time-dependent density functional theory (TD DFT) calculations made it possible to assign the nature of emissive excited states in both deprotonated and protonated forms of these molecules. The complexes 3 and 4 internalize into living CHO-K1 cells, localize in cytoplasmic vesicles, primarily in lysosomes and acidified endosomes, and demonstrate relatively low toxicity, showing more than 80% cells viability up to the concentration of 10 µM after 24 h incubation. Phosphorescence lifetime imaging microscopy (PLIM) experiments in these cells display lifetime distribution, the conversion of which into pH values using calibration curves gives the magnitudes of this parameter compatible with the physiologically relevant interval of the cell compartments pH.


Assuntos
Concentração de Íons de Hidrogênio , Irídio/química , Compostos Organometálicos/química , Animais , Linhagem Celular , Fenômenos Químicos , Técnicas de Química Sintética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Imagem Molecular , Estrutura Molecular , Compostos Organometálicos/síntese química , Difração de Raios X
12.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068190

RESUMO

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)2(N^N)]+ complexes (N^C-benzothienyl-phenanthridine based cyclometalated ligand; N^N-pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters' solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry. The complexes exhibited excitation close to the biological "window of transparency", NIR emission at 730 nm, and quantum yields up to 12% in water. The compounds with higher degree of the chromophore shielding possess low toxicity, bleaching stability, absence of sensitivity to variations of pH, serum, and complex concentrations. The properties of these probes as oxygen sensors for biological systems have been studied by using phosphorescence lifetime imaging experiments in different cell cultures. The results showed essential lifetime response onto variations in oxygen concentration (2.0-2.3 µs under normoxia and 2.8-3.0 µs under hypoxia conditions) in complete agreement with the calibration curves obtained "in cuvette". The data obtained indicate that these emitters can be used as semi-quantitative oxygen sensors in biological systems.


Assuntos
Materiais Biocompatíveis/química , Irídio/química , Luminescência , Oxigênio/análise , Animais , Células CHO , Cricetulus , Células HeLa , Humanos , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética , Frações Subcelulares/metabolismo
13.
Beilstein J Org Chem ; 17: 1490-1498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239616

RESUMO

A wide range of derivatives with new pyrido[2,1-a]pyrrolo[3,4-c]isoquinoline skeleton was synthesized by free-radical intramolecular cyclization of o-bromophenyl-substituted pyrrolylpyridinium salts using the (TMS)3SiH/AIBN system. The cyclization provides generally good yields of pyrido[2,1-a]pyrrolo[3,4-c]isoquinoline hydrobromides having no additional radical-sensitive substituents. The free bases can be obtained from the synthesized hydrobromides in quantitative yield by basification at room temperature. The selectivity control of intramolecular arylation was achieved by replacing the halogen: the use of 1-(2-(ortho-bromophenyl)-4-(ortho-iodophenyl)pyrrol-3-yl)pyridinium bromide makes it possible to obtain a monocyclization product, and the bicyclization product from the dibromo derivative. The procedure is also applicable to obtain 3-arylpyrido[2,1-a]pyrrolo[3,2-c]isoquinoline derivatives including 2-unsubstituted skeletons that are inaccessible via Pd-catalyzed cyclization.

14.
Bioconjug Chem ; 31(11): 2628-2637, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33048524

RESUMO

Herein we report on the synthesis, structural characterization and photophysical properties of cyclometalated Pt(II) complexes [Pt(N^C)(PPh2(C6H4COOH))Cl] (where N^C ligands are 2-phenylpyridine, (2-benzofuran-3-yl)pyridine, and (2-benzo[b]tiophen-3-yl)pyridine) and their conjugates with the histidine-containing RRRRRRRRRRHVLPKVQA peptide. This peptide contains the RHVLPKVQA sequence, which is responsible for antiamyloid activity, and the Arg9 RRRRRRRRR domain, which shows improved translocation through cell membranes. The chemistry underpinning the conjugation is regioselective complexation between Pt(II) complexes and histidine residue in the peptide. The prepared conjugates have been characterized using high-resolution mass spectrometry and NMR spectroscopy. It was shown that the conjugates are easily soluble in aqueous media and display emission band profiles essentially similar to those of the starting complexes but considerably higher luminescence quantum yield and much longer phosphorescence lifetime. MTT assay on HeLa cell culture revealed no cytotoxicity up to 10 µM after 24 h of incubation. Ex vivo and in vivo neuroimaging experiments on both wild and amyloid peptide expressing strains of Drosophila melanogaster revealed that the conjugates penetrate the blood-brain barrier and are evenly distributed throughout the brain independently of the strain used.


Assuntos
Barreira Hematoencefálica , Complexos de Coordenação/química , Platina/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Drosophila melanogaster , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Luminescência , Estrutura Molecular
15.
Bioconjug Chem ; 31(5): 1327-1343, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32223218

RESUMO

Two NIR-emitting platinum [Pt(N^N^C)(phosphine)] and iridium [Ir(N^C)2(N^N)]+ complexes containing reactive succinimide groups were synthesized and characterized with spectroscopic methods (N^N^C, 1-phenyl-3-(pyridin-2-yl)benzo[4,5]imidazo[1,2-a]pyrazine, N^C, 6-(2-benzothienyl)phenanthridine, phosphine-3-(diphenylphosphaneyl)propanoic acid N-hydroxysuccinimide ether, and N^N, 4-oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic acid N-hydroxysuccinimide ether). Their photophysics were carefully studied and analyzed using time-dependent density functional theory calculations. These complexes were used to prepare luminescent micro- and nanoparticles with the "core-shell" morphology, where the core consisted of biodegradable polymers of different hydrophobicity, namely, poly(d,l-lactic acid), poly(ε-caprolactone), and poly(ω-pentadecalactone), whereas the shell was formed by covalent conjugation with poly(l-lysine) covalently labeled with the platinum and iridium emitters. The surface of the species was further modified with heparin to reverse their charge from positive to negative values. The microparticles' size determined with dynamic laser scanning varies considerably from 720 to 1480 nm, but the nanoparticles' diameter falls in a rather narrow range, 210-230 nm. The species with a poly(l-lysine) shell display a high positive (>30 mV) zeta-potential that makes them essentially stable in aqueous media. Inversion of the surface charge to a negative value with the heparin cover did not deteriorate the species' stability. The iridium- and platinum-containing particles displayed emissions the spectral patterns of which were essentially similar to those of unconjugated complexes, which indicate retention of the chromophore nature upon binding to the polymer and further immobilization onto polyester micro- and nanoparticles for drug delivery. The obtained particles were tested to determine their ability to penetrate into different cells types: cancer cells, stem cells, and fibroblasts. It was found that all types of particles could effectively penetrate into all cells types under investigation. Nanoparticles were shown to penetrate into the cells more effectively than microparticles. However, positively charged nanoparticles covered with poly(l-lysine) seem to interact with negatively charged proteins in the medium and enter the inner part of the cells less effectively than nanoparticles covered with poly(l-lysine)/heparin. In the case of microparticles, the species with positive zeta-potentials were more readily up-taken by the cells than those with negative values.


Assuntos
Portadores de Fármacos/química , Raios Infravermelhos , Irídio/química , Nanoestruturas/química , Platina/química , Polímeros/química , Animais , Camundongos , Células NIH 3T3 , Succinimidas/química
16.
Inorg Chem ; 59(8): 5702-5712, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32227924

RESUMO

The six-coordinated silver(I) complex [Au2Ag(µ-(PPh2)2py)2(OTf)2](OTf), 4 (py = pyridine, OTf = CF3SO3), and the five-coordinated silver(I) complex [Au2Ag(acetone)(µ-(PPh2)2py)2](PF6)3, 6, were prepared by the reaction of the precursor complexes 1(OTf)2 and 1(PF6)2, in which 1 = [Au2(µ-(PPh2)2py)2]2+, with 1 equiv of Ag(OTf) in dichloromethane and excess of Ag(PF6) in a mixture of dichloromethane/acetone, respectively. Also, the five-coordinated silver(I) complex [Au2Ag(µ-(PPh2)2py)2(py)(OTf)](OTf)2, 5, was obtained by the reaction of 4 with pyridine. The clusters 4-6 were characterized using multinuclear NMR spectroscopy and elemental microanalysis. The single-crystal X-ray diffraction analysis revealed the octahedral and distorted square pyramidal geometries around the silver(I) centers in the crystal structures of 4 and 6, respectively; a dynamic structure was observed for cluster 5 due to pendulum motion of the Ag(pyridine) moiety, which was anchored in the metallomacrocyclic unit [Au2(µ-(PPh2)2py)2]2+. Although the crystal structure of 6 did not display disorders for the silver atom and the acetone ligand similar to that observed for 5, the low-temperature NMR spectroscopies and calculations show a dynamic structure for cluster 6 due to linear motion of the Ag(acetone) moiety. The reaction of the precursor complex 1(PO2F2)2 with 2 equiv of Ag(PO2F2) yielded the tetranuclear Au2Ag2 cluster [Au2Ag2(PO2F2)2(µ-(PPh2)2py)2](PO2F2)2, 7, with a planar-shaped {Au2Ag2} metal core in which alternating Au and Ag atoms occupy the tetragon vertices and showed a strong argentophillic interaction between the silver(I) centers. All clusters 4-7 are emissive in the solid state, and the origins of their emissive excited states were determined using time-dependent density functional theory calculations. Cluster 7 showed a dual phosphorescence emission, which displays strong dependence of the contributions of each emissive component onto the excitation wavelength.

17.
Inorg Chem ; 58(6): 3646-3660, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30793896

RESUMO

The series of chelating phosphine ligands, which contain bidentate P2 (bis[(2-diphenylphosphino)phenyl] ether, DPEphos; 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, Xantphos; 1,2-bis(diphenylphosphino)benzene, dppb), tridentate P3 (bis(2-diphenylphosphinophenyl)phenylphosphine), and tetradentate P4 (tris(2-diphenylphosphino)phenylphosphine) ligands, was used for the preparation of the corresponding dinuclear [M(µ2-SCN)P2]2 (M = Cu, 1, 3, 5; M = Ag, 2, 4, 6) and mononuclear [CuNCS(P3/P4)] (7, 9) and [AgSCN(P3/P4)] (8, 10) complexes. The reactions of P4 with silver salts in a 1:2 molar ratio produce tetranuclear clusters [Ag2(µ3-SCN)(t-SCN)(P4)]2 (11) and [Ag2(µ3-SCN)(P4)]22+ (12). Complexes 7-11 bearing terminally coordinated SCN ligands were efficiently converted into derivatives 13-17 with the weakly coordinating -SCN:B(C6F5)3 isothiocyanatoborate ligand. Compounds 1 and 5-17 exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. The excited states of thiocyanate species are dominated by the ligand to ligand SCN → π(phosphine) charge transfer transitions mixed with a variable contribution of MLCT. The boronation of SCN groups changes the nature of both the S1 and T1 states to (L + M)LCT d,p(M, P) → π(phosphine). The localization of the excited states on the aromatic systems of the phosphine ligands determines a wide range of luminescence energies achieved for the title complexes (λem varies from 448 nm for 1 to 630 nm for 10c). The emission of compounds 10 and 15, based on the P4 ligand, strongly depends on the solid-state packing (λem = 505 and 625 nm for two crystalline forms of 15), which affects structural reorganizations accompanying the formation of electronically excited states.

18.
Inorg Chem ; 58(3): 1988-2000, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30633505

RESUMO

The reactions of labile [Re(diimine)(CO)3(H2O)]+ precursors (diimine = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen) with dicyanoargentate anion produce the dirhenium cyanide-bridged compounds [{Re(diimine)(CO)3}2CN)]+ (1 and 2). Substitution of the axial carbonyl ligands in 2 for triphenylphosphine gives the derivative [{Re(phen)(CO)2(PPh3)}2CN]+ (3), while the employment of a neutral metalloligand [Au(PPh3)(CN)] affords heterobimetallic complex [{Re(phen)(CO)3}NCAu(PPh3)]+ (4). Furthermore, the utilization of [Au(CN)2]-, [Pt(CN)4]2-, and [Fe(CN)6]4-/3- cyanometallates leads to the higher nuclearity aggregates [{Re(diimine)(CO)3NC} xM] m+ (M = Au, x = 2, 5 and 6; Pt, x = 4, 7 and 8; Fe, x = 6, 9 and 10). All novel compounds were characterized crystallographically. Assemblies 1-8 are phosphorescent both in solution and in the solid state; according to the DFT analysis, the optical properties are mainly associated with charge transfer from Re tricarbonyl motif to the diimine fragment. The energy of this process can be substantially modified by the properties of the ancillary ligands that allows to attain near-IR emission for 3 (λem = 737 nm in CH2Cl2). The Re-FeII/III complexes 9 and 10 are not luminescent but exhibit low energy absorptions, reaching 846 nm (10) due to ReI → FeIII transition.

19.
Inorg Chem ; 58(1): 204-217, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30376305

RESUMO

This work describes interaction of a family of [Pt(N∧C)(PR3)Cl] complexes with imidazole (Im), possible application of this chemistry for regioselective labeling of proteins through imidazole rings of histidine residues and employment of the resulting phosphorescent products in bioimaging. It was found that the complexes containing aliphatic phosphines display reversible substitution of chloride ligand for imidazole function that required considerable excess of imidazole to obtain full conversion into the substituted [Pt(ppy)(PR3)(Im)] product, whereas the substitution in the complexes with aromatic phosphines readily proceeds in 1:1.5 mixture of reagents. Rapid, selective, and quantitative coordination of imidazole to the platinum complexes enabled regioselective labeling of ubiquitin. X-ray protein crystallography of the {[Pt(ppy)(PPh3)]/ubiquitin} conjugate revealed direct bonding of the platinum center to unique histidine-68 residue through the nitrogen atom of imidazole function, the coordination being also supported by noncovalent interaction of the ligands with the protein secondary structure. The variations of the cyclometalating N∧C ligands gave a series of [Pt(N∧C)(PPh3)Cl] complexes (N∧C = 2-phenylpyridine, 2-(benzofuran-3-yl)pyridine, 2-(benzo[b]thiophen-3-yl)pyridine, methyl-2-phenylquinoline-4-carboxylate), which were used to investigate the impact of N∧C-ligand onto photophysical properties of the imidazole complexes and conjugates with human serum albumin (HSA). The chloride ligand substitution for imidazole and formation of the conjugates results in ignition of the platinum chromophore luminescence with substantially higher quantum yield in the latter case. Variation of the metalating N∧C-ligand made possible the shift of the emission to the red region of visible spectrum for both types of the products. Cell-viability tests revealed low cytotoxicity of all {[Pt(N∧C)(PPh3)Cl]/HSA} conjugates, while PLIM experiments demonstrated their high potential for oxygen sensing.

20.
Chemistry ; 24(6): 1404-1415, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29115036

RESUMO

The series of cyanide-bridged coordination polymers [(P2 )CuCN]n (1), [(P2 )Cu{M(CN)2 }]n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P4 )MM'(CN)}2 ]2+ (MM'=Cu2 6, Ag2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P2 and tetradentate P4 phosphane ligands (P2 =1,2-bis(diphenylphosphino)benzene; P4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d10 -d10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T1 and S1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S1 -T1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa