RESUMO
Endogenous electrophiles, ionizing and non-ionizing radiation, and hazardous chemicals present in the environment and diet can damage DNA by forming covalent adducts. DNA adducts can form in critical cancer driver genes and, if not repaired, may induce mutations during cell division, potentially leading to the onset of cancer. The detection and quantification of specific DNA adducts are some of the first steps in studying their role in carcinogenesis, the physiological conditions that lead to their production, and the risk assessment of exposure to specific genotoxic chemicals. Hundreds of different DNA adducts have been reported in the literature, and there is a critical need to establish a DNA adduct mass spectral database to facilitate the detection of previously observed DNA adducts and characterize newly discovered DNA adducts. We have collected synthetic DNA adduct standards from the research community, acquired MSn (n = 2, 3) fragmentation spectra using Orbitrap and Quadrupole-Time-of-Flight (Q-TOF) MS instrumentation, processed the spectral data and incorporated it into the MassBank of North America (MoNA) database, and created a DNA adduct portal Web site (https://sites.google.com/umn.edu/dnaadductportal) to serve as a central location for the DNA adduct mass spectra and metadata, including the spectral database downloadable in different formats. This spectral library should prove to be a valuable resource for the DNA adductomics community, accelerating research and improving our understanding of the role of DNA adducts in disease.
Assuntos
Adutos de DNA , DNA , Humanos , DNA/química , Espectrometria de Massas , Dano ao DNA , CarcinogêneseRESUMO
Aflatoxin B1 (AFB1) is a potent human liver carcinogen produced by certain molds, particularly Aspergillus flavus and Aspergillus parasiticus, which contaminate peanuts, corn, rice, cottonseed, and ground and tree nuts, principally in warm and humid climates. AFB1 undergoes bioactivation in the liver to produce AFB1-exo-8,9-epoxide, which forms the covalently bound cationic AFB1-N7-guanine (AFB1-N7-Gua) DNA adduct. This adduct is unstable and undergoes base-catalyzed opening of the guanine imidazolium ring to form two ring-opened diastereomeric 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy-aflatoxin B1 (AFB1-FapyGua) adducts. The AFB1 formamidopyrimidine (Fapy) adducts induce G â T transversion mutations and are likely responsible for the carcinogenic effects of AFB1. Quantitative liquid chromatography-mass spectrometry (LC-MS) methods have shown that AFB1-N7-Gua is eliminated in rodent and human urine, whereas ring-opened AFB1-FapyGua adducts persist in rodent liver. However, fresh frozen biopsy tissues are seldom available for biomonitoring AFB1 DNA adducts in humans, impeding research advances in this potent liver carcinogen. In contrast, formalin-fixed paraffin-embedded (FFPE) specimens used for histopathological analysis are often accessible for molecular studies. However, ensuring nucleic acid quality presents a challenge due to incomplete reversal of formalin-mediated DNA cross-links, which can preclude accurate quantitative measurements of DNA adducts. In this study, employing ion trap or high-resolution accurate Orbitrap mass spectrometry, we demonstrate that ring-opened AFB1-FapyGua adducts formed in AFB1-exposed newborn mice are stable to the formalin fixation and DNA de-cross-linking retrieval processes. The AFB1-FapyGua adducts can be detected at levels comparable to those in a match of fresh frozen liver. Orbitrap MS2 measurements can detect AFB1-FapyGua at a quantification limit of 4.0 adducts per 108 bases when only 0.8 µg of DNA is assayed on the column. Thus, our breakthrough DNA retrieval technology can be adapted to screen for AFB1 DNA adducts in FFPE human liver specimens from cohorts at risk of this potent liver carcinogen.
Assuntos
Aflatoxina B1 , Adutos de DNA , Camundongos , Humanos , Animais , Aflatoxina B1/química , Inclusão em Parafina , DNA/metabolismo , Carcinógenos/metabolismo , Espectrometria de Massas , Guanina , FormaldeídoRESUMO
Air pollution, tobacco smoke, and red meat are associated with renal cell cancer (RCC) risk in the United States and Western Europe; however, the chemicals that form DNA adducts and initiate RCC are mainly unknown. Aristolochia herbaceous plants are used for medicinal purposes in Asia and worldwide. They are a significant risk factor for upper tract urothelial carcinoma (UTUC) and RCC to a lesser extent. The aristolochic acid (AA) 8-methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I), a component of Aristolochia herbs, contributes to UTUC in Asian cohorts and in Croatia, where AA-I exposure occurs from ingesting contaminated wheat flour. The DNA adduct of AA-I, 7-(2'-deoxyadenosin-N6-yl)-aristolactam I, is often detected in patients with UTUC, and its characteristic A:T-to-T:A mutational signature occurs in oncogenes and tumor suppressor genes in AA-associated UTUC. Identifying DNA adducts in the renal parenchyma and pelvis caused by other chemicals is crucial to gaining insights into unknown RCC and UTUC etiologies. We employed untargeted screening with wide-selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) with nanoflow liquid chromatography/Orbitrap mass spectrometry to detect DNA adducts formed in rat kidneys and liver from a mixture of 13 environmental, tobacco, and dietary carcinogens that may contribute to RCC. Twenty DNA adducts were detected. DNA adducts of 3-nitrobenzanthrone (3-NBA), an atmospheric pollutant, and AA-I were the most abundant. The nitrophenanthrene moieties of 3-NBA and AA-I undergo reduction to their N-hydroxy intermediates to form 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) adducts. We also discovered a 2'-deoxycytidine AA-I adduct and dA and dG adducts of 10-methoxy-6-nitro-phenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-III), an AA-I isomer and minor component of the herbal extract assayed, signifying AA-III is a potent kidney DNA-damaging agent. The roles of AA-III, other nitrophenanthrenes, and nitroarenes in renal DNA damage and human RCC warrant further study. Wide-SIM/MS2 is a powerful scanning technology in DNA adduct discovery and cancer etiology characterization.
Assuntos
Ácidos Aristolóquicos , Carcinoma de Células Renais , Carcinoma de Células de Transição , Neoplasias Renais , Neoplasias da Bexiga Urinária , Ratos , Animais , Humanos , Adutos de DNA , Carcinoma de Células Renais/patologia , Carcinoma de Células de Transição/patologia , Farinha/análise , Neoplasias da Bexiga Urinária/patologia , Triticum , Ácidos Aristolóquicos/química , DNA , Rim/patologia , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/patologia , Fígado/química , Ácidos Carboxílicos , Carcinógenos/químicaRESUMO
Human tissue three-dimensional (3D) organoid cultures have the potential to reproduce in vitro the physiological properties and cellular architecture of the organs from which they are derived. The ability of organoid cultures derived from human stomach, liver, kidney, and colon to metabolically activate three dietary carcinogens, aflatoxin B1 (AFB1), aristolochic acid I (AAI), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was investigated. In each case, the response of a target tissue (liver for AFB1; kidney for AAI; colon for PhIP) was compared with that of a nontarget tissue (gastric). After treatment cell viabilities were measured, DNA damage response (DDR) was determined by Western blotting for p-p53, p21, p-CHK2, and γ-H2AX, and DNA adduct formation was quantified by mass spectrometry. Induction of the key xenobiotic-metabolizing enzymes (XMEs) CYP1A1, CYP1A2, CYP3A4, and NQO1 was assessed by qRT-PCR. We found that organoids from different tissues can activate AAI, AFB1, and PhIP. In some cases, this metabolic potential varied between tissues and between different cultures of the same tissue. Similarly, variations in the levels of expression of XMEs were observed. At comparable levels of cytotoxicity, organoids derived from tissues that are considered targets for these carcinogens had higher levels of adduct formation than a nontarget tissue.
Assuntos
Adutos de DNA , Neoplasias , Humanos , Carcinógenos/toxicidade , Carcinógenos/metabolismo , Fígado/metabolismo , Organoides/metabolismoRESUMO
Smoking is a risk factor for bladder cancer (BC), although the specific chemicals responsible for BC remain uncertain. Considerable research has focused on aromatic amines (AAs), including o-toluidine (o-tol), o-anisidine (o-anis), 2-naphthylamine (2-NA), and 4-aminobiphenyl (4-ABP), which are linked to human BC based on elevated BC incidence in occupationally exposed factory workers. These AAs arise at nanogram levels per combusted cigarette. The unambiguous identification of AAs, particularly low-molecular-weight monocyclic AAs in tobacco smoke extracts, by liquid chromatography-mass spectrometry (LC-MS) is challenging due to their poor performance on reversed-phase columns and co-elution with isobaric interferences from the complex tobacco smoke matrix. We employed a tandem liquid-liquid and solid-phase extraction method to isolate AAs from the basic fraction of tobacco smoke condensate (TSC) and utilized high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to high-resolution accurate mass (HRAM) Orbitrap LC-MS2 to assay AAs in TSC. The employment of FAIMS greatly reduced sample complexity by removing precursor co-isolation interfering species at the MS1 scan stage, resulting in dramatically improved signal-to-noise of the precursor ions and cleaner, high-quality MS2 spectra for unambiguous identification and quantification of AAs in TSC. We demonstrate the power of LC/FAIMS/MS2 by characterizing and quantifying two low-molecular-weight carcinogenic AAs, o-tol and o-anis, in TSC, using stable isotopically labeled internal standards. These results demonstrate the power of FAIMS in trace-level analyses of AA carcinogens in the complex tobacco smoke matrix.
Assuntos
Poluição por Fumaça de Tabaco , Neoplasias da Bexiga Urinária , Humanos , Poluição por Fumaça de Tabaco/análise , Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem/métodos , Carcinógenos/química , Aminas/químicaRESUMO
Animal fat and iron-rich diets are risk factors for Parkinson's disease (PD). The heterocyclic aromatic amines (HAAs) harman and norharman are neurotoxicants formed in many foods and beverages, including cooked meats, suggesting a role for red meat in PD. The structurally related carcinogenic HAAs 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) also form in cooked meats. We investigated the cytotoxicity, DNA-damaging potential, and mitochondrial damage of HAAs and their genotoxic HONH-HAA metabolites in galactose-dependent SH-SY5Y cells, a human neuroblastoma cell line relevant for PD-related neurotoxicity. All HAAs and HONH-HAAs induced weak toxicity except HONH-PhIP, which was 1000-fold more potent than the other chemicals. HONH-PhIP DNA adduct formation occurred at 300-fold higher levels than adducts formed with HONH-MeIQx and HONH-AαC, assuming similar cellular uptake rates. PhIP-DNA adduct levels occurred at concentrations as low as 1 nM and were threefold or higher and more persistent in mitochondrial DNA than nuclear DNA. N-Acetyltransferases (NATs), sulfotransferases, and kinases catalyzed PhIP-DNA binding and converted HONH-PhIP to highly reactive ester intermediates. DNA binding assays with cytosolic, mitochondrial, and nuclear fractions of SH-SY5Y fortified with cofactors revealed that cytosolic AcCoA-dependent enzymes, including NAT1, mainly carried out HONH-PhIP bioactivation to form N-acetoxy-PhIP, which binds to DNA. Furthermore, HONH-PHIP and N-acetoxy-PhIP inhibited mitochondrial complex-I, -II, and -III activities in isolated SH-SY5Y mitochondria. Mitochondrial respiratory chain complex dysfunction and DNA damage are major mechanisms in PD pathogenesis. Our data support the possible role of PhIP in PD etiology.
Assuntos
Carcinógenos , Neuroblastoma , Animais , Humanos , Carcinógenos/metabolismo , Piridinas , Dano ao DNA , Aminas/metabolismo , Carne/análiseRESUMO
Epidemiological and mechanistic studies suggest that processed and red meat consumption and tobacco smoking are associated with colorectal cancer (CRC) risk. Several classes of carcinogens, including N-nitroso compounds (NOCs) in processed meats and heterocyclic aromatic amines (HAAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled meats and tobacco smoke, undergo metabolism to reactive intermediates that may form mutation-inducing DNA adducts in the colorectum. Heme iron in red meat may contribute to oxidative DNA damage and endogenous NOC formation. However, the chemicals involved in colorectal DNA damage and the paradigms of CRC etiology remain unproven. There is a critical need to establish physicochemical methods for identifying and quantitating DNA damage induced by genotoxicants in the human colorectum. We established robust nano-liquid chromatography/high-resolution accurate mass Orbitrap tandem mass spectrometry (LC/HRAMS2) methods to measure DNA adducts of nine meat and tobacco-associated carcinogens and lipid peroxidation products in the liver, colon, and rectum of carcinogen-treated rats employing fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissues. Some NOCs form O6-carboxymethyl-2'-deoxyguanosine, O6-methyl-2'-deoxyguanosine, and unstable quaternary N-linked purine/pyrimidine adducts, which generate apurinic/apyrimidinic (AP) sites. AP sites were quantitated following derivatization with O-(pyridin-3-yl-methyl)hydroxylamine. DNA adduct quantitation was conducted with stable isotope-labeled internal standards, and method performance was validated for accuracy and reproducibility. Limits of quantitation ranged from 0.1 to 1.1 adducts per 108 bases using 3 µg of DNA. Adduct formation in animals ranged from â¼1 in 108 to â¼1 in 105 bases, occurring at comparable levels in fresh-frozen and FFPE specimens for most adducts. AP sites increased by 25- to 75-fold in the colorectum and liver, respectively. Endogenous lipid peroxide-derived 3-(2-deoxy-ß-d-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) and 6-oxo-M1dG adduct levels were not increased by carcinogen dosing but increased in FFPE tissues. Human biomonitoring studies can implement LC/HRAMS2 assays for DNA adducts and AP sites outlined in this work to advance our understanding of CRC etiology.
Assuntos
Neoplasias Colorretais , Hidrocarbonetos Policíclicos Aromáticos , Poluição por Fumaça de Tabaco , Aminas , Animais , Monitoramento Biológico , Carcinógenos/química , Cromatografia Líquida/métodos , Neoplasias Colorretais/induzido quimicamente , DNA/química , Adutos de DNA , Dano ao DNA , Desoxiguanosina/química , Formaldeído/química , Heme , Humanos , Hidroxilaminas/análise , Ferro , Peróxidos Lipídicos , Compostos Nitrosos , Hidrocarbonetos Policíclicos Aromáticos/análise , Purinas/análise , Pirimidinas/análise , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Nicotiana/química , Poluição por Fumaça de Tabaco/análiseRESUMO
Well-done cooked red meat consumption is linked to aggressive prostate cancer (PC) risk. Identifying mutation-inducing DNA adducts in the prostate genome can advance our understanding of chemicals in meat that may contribute to PC. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic aromatic amine (HAA) formed in cooked meat, is a potential human prostate carcinogen. PhIP was measured in the hair of PC patients undergoing prostatectomy, bladder cancer patients under treatment for cystoprostatectomy, and patients treated for benign prostatic hyperplasia (BPH). PhIP hair levels were above the quantification limit in 123 of 205 subjects. When dichotomizing prostate pathology biomarkers, the geometric mean PhIP hair levels were higher in patients with intermediate and elevated-risk prostate-specific antigen values than lower-risk values <4 ng/mL (p = 0.03). PhIP hair levels were also higher in patients with intermediate and high-risk Gleason scores ≥7 compared to lower-risk Gleason score 6 and BPH patients (p = 0.02). PC patients undergoing prostatectomy had higher PhIP hair levels than cystoprostatectomy or BPH patients (p = 0.02). PhIP-DNA adducts were detected in 9.4% of the patients assayed; however, DNA adducts of other carcinogenic HAAs, and benzo[a]pyrene formed in cooked meat, were not detected. Prostate specimens were also screened for 10 oxidative stress-associated lipid peroxidation (LPO) DNA adducts. Acrolein 1,N2-propano-2'-deoxyguanosine adducts were detected in 54.5% of the patients; other LPO adducts were infrequently detected. Acrolein adducts were not associated with prostate pathology biomarkers, although DNA adductomic profiles differed between PC patients with low and high-grade Gleason scores. Many DNA adducts are of unknown origin; however, dG adducts of formaldehyde and a series of purported 4-hydroxy-2-alkenals were detected at higher abundance in a subset of patients with elevated Gleason scores. The PhIP hair biomarker and DNA adductomics data support the paradigm of well-done cooked meat and oxidative stress in aggressive PC risk.
Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Acroleína , Biomarcadores , Carcinógenos/análise , DNA , Adutos de DNA , Cabelo/química , Humanos , Masculino , Carne/efeitos adversos , Carne/análise , Piridinas , Dosímetros de RadiaçãoRESUMO
Smoking is a major risk factor for bladder cancer (BC), with up to 50% of BC cases being attributed to smoking. There are 70 known carcinogens in tobacco smoke; however, the principal chemicals responsible for BC remain uncertain. The aromatic amines 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are implicated in BC pathogenesis of smokers on the basis of the elevated BC risk in factory workers exposed to these chemicals. However, 4-ABP and 2-NA only occur at several nanograms per cigarette and may be insufficient to induce BC. In contrast, other genotoxicants, including acrolein, occur at 1000-fold or higher levels in tobacco smoke. There is limited data on the toxicological effects of tobacco smoke in human bladder cells. We have assessed the cytotoxicity, oxidative stress, and DNA damage of tobacco smoke condensate (TSC) in human RT4 bladder cells. TSC was fractionated by liquid-liquid extraction into an acid-neutral fraction (NF), containing polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, phenols, and aldehydes, and a basic fraction (BF) containing aromatic amines, heterocyclic aromatic amines, and N-nitroso compounds. The TSC and NF induced a time- and concentration-dependent cytotoxicity associated with oxidative stress, lipid peroxide formation, glutathione (GSH) depletion, and apurinic/apyrimidinic (AP) site formation, while the BF showed weak effects. LC/MS-based metabolomic approaches showed that TSC and NF altered GSH biosynthesis pathways and induced more than 40 GSH conjugates. GSH conjugates of several hydroquinones were among the most abundant conjugates. RT4 cell treatment with synthetic hydroquinones and cresol mixtures at levels present in tobacco smoke accounted for most of the TSC-induced cytotoxicity and the AP sites formed. GSH conjugates of acrolein, methyl vinyl ketone, and crotonaldehyde levels also increased owing to TSC-induced oxidative stress. Thus, TSC is a potent toxicant and DNA-damaging agent, inducing deleterious effects in human bladder cells at concentrations of <1% of a cigarette in cell culture media.
Assuntos
Poluição por Fumaça de Tabaco , Neoplasias da Bexiga Urinária , Humanos , 2-Naftilamina/metabolismo , 2-Naftilamina/farmacologia , Acroleína/metabolismo , Aldeídos/metabolismo , Carcinógenos/química , Cresóis/metabolismo , Cresóis/farmacologia , DNA/metabolismo , Dano ao DNA , Células Epiteliais , Glutationa/metabolismo , Hidroquinonas/metabolismo , Peróxidos Lipídicos/metabolismo , Compostos Nitrosos/metabolismo , Estresse Oxidativo , Fumaça/efeitos adversos , Fumaça/análise , Nicotiana/química , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/metabolismoRESUMO
A novel software has been created to comprehensively characterize covalent modifications of DNA through mass spectral analysis of enzymatically hydrolyzed DNA using the neutral loss of 2'-deoxyribose, a nearly universal MS2 fragmentation process of protonated 2'-deoxyribonucleosides. These covalent modifications termed DNA adducts form through xenobiotic exposures or by reaction with endogenous electrophiles and can induce mutations during cell division and initiate carcinogenesis. DNA adducts are typically present at trace levels in the human genome, requiring a very sensitive and comprehensive data acquisition and analysis method. Our software, wSIM-City, was created to process mass spectral data acquired by a wide selected ion monitoring (wSIM) with gas-phase fractionation and coupled to wide MS2 fragmentation. This untargeted approach can detect DNA adducts at trace levels as low as 1.5 adducts per 109 nucleotides. This level of sensitivity is sufficient for comprehensive analysis and characterization of DNA modifications in human specimens.
Assuntos
Adutos de DNA , DNA , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas , Nucleotídeos , XenobióticosRESUMO
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Assuntos
Adutos de DNA/análise , Espectrometria de Massas/métodos , Animais , Biópsia , Cromatografia Líquida/métodos , Adutos de DNA/genética , Humanos , Mutação , Neoplasias/genéticaRESUMO
Aristolochic acid (AA-I) induces upper urothelial tract cancer (UUTC) and bladder cancer (BC) in humans. AA-I forms the 7-(2'-deoxyadenosin-N6-yl)aristolactam I (dA-AL-I) adduct, which induces multiple A:T-to-T:A transversion mutations in TP53 of AA-I exposed UTUC patients. This mutation is rarely reported in TP53 of other transitional cell carcinomas and thus recognized as an AA-I mutational signature. A:T-to-T:A transversion mutations were recently detected in bladder tumors of patients in Asia with known AA-I-exposure, implying that AA-I contributes to BC. Mechanistic studies on AA-I genotoxicity have not been reported in human bladder. In this study, we examined AA-I DNA adduct formation and mechanisms of toxicity in the human RT4 bladder cell line. The biological potencies of AA-I were compared to 4-aminobiphenyl, a recognized human bladder carcinogen, and several structurally related carcinogenic heterocyclic aromatic amines (HAA), which are present in urine of smokers and omnivores. AA-I (0.05-10 µM) induced a concentration- and time-dependent cytotoxicity. AA-I (100 nM) DNA adduct formation occurred at over a thousand higher levels than the principal DNA adducts formed with 4-ABP or HAAs (1 µM). dA-AL-I adduct formation was detected down to a 1 nM concentration. Studies with selective chemical inhibitors provided evidence that NQO1 is the major enzyme involved in AA-I bio-activation in RT4 cells, whereas CYP1A1, another enzyme implicated in AA-I toxicity, had a lesser role in bio-activation or detoxification of AA-I. AA-I DNA damage also induced genotoxic stress leading to p53-dependent apoptosis. These biochemical data support the human mutation data and a role for AA-I in BC.
Assuntos
Ácidos Aristolóquicos/toxicidade , Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Compostos de Aminobifenil/toxicidade , Ácidos Aristolóquicos/administração & dosagem , Carcinógenos/administração & dosagem , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Mutação , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteína Supressora de Tumor p53/genética , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologiaRESUMO
OBJECTIVES: Cooking oil fumes (COFs) contain many carcinogens. We investigated the association between COFs and incidence risk of colorectal cancer and female breast in chefs. METHODS: We identified Chinese food chefs and non-Chinese food chefs from Taiwan's national database of certified chefs in 1984-2007. In total, 379,275 overall and 259,450 females had not been diagnosed as having any cancer before chef certification. We followed these chefs in Taiwan's Cancer Registry Database (1979-2010) and Taiwan's National Death Statistics Database (1985-2011) for newly diagnosed colorectal cancer and female breast cancer. RESULTS: A total of 4,218,135 and 2,873,515 person-years were included in our analysis of colorectal cancer and female breast cancer incidence, respectively. Compared to non-Chinese food chefs, the Chinese food chefs had an adjusted IRR for colorectal cancer of 1.65 (95% CI 1.17-2.33). The risk of colorectal cancer was even higher among female Chinese food chefs certified for more than 5 years (adjusted incident rate ratio (IRR) = 2.39, 95% CI 1.38-4.12). For female breast cancer, the risk was also significant (adjusted IRR = 1.40, 95% CI 1.10-1.78) and the risks were even higher in female Chinese food chefs certified for more than 5 years (adjusted IRR = 1.74, 95% CI 1.37-2.22). CONCLUSIONS: This study found that Chinese food chefs had an increased risk of colorectal cancer and female breast cancer, particularly female chefs who had worked for more than 5 years. Future human and animal studies are necessary to re-confirm these findings.
Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias Colorretais/epidemiologia , Culinária , Adolescente , Adulto , Poluentes Atmosféricos , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Óleos , Sistema de Registros , Risco , Fumaça , Taiwan/epidemiologia , Adulto JovemRESUMO
Metabolic activation of the carcinogenic tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) results in formation of reactive electrophiles that modify DNA to produce a variety of products including methyl, 4-(3-pyridyl)-4-oxobutyl (POB)-, and 4-(3-pyridyl)-4-hydroxybutyl adducts. Among these are adducts such as 7-POB-deoxyguanosine (N7POBdG) which can lead to apurinic/apyrimidinic (AP) sites by facile hydrolysis of the base-deoxyribonucleoside bond. In this study, we used a recently developed highly sensitive mass spectrometric method to quantitate AP sites by derivatization with O-(pyridin-3-yl-methyl)hydroxylamine (PMOA) (detection limit, 2 AP sites per 108 nucleotides). AP sites were quantified in DNA isolated from tissues of rats treated with NNN and NNK and from human lung tissue and leukocytes of cigarette smokers and nonsmokers. Rats treated with 5 or 21 mg/kg bw NNK for 4 days by s.c. injection had 2-6 and 2-17 times more AP sites than controls in liver and lung DNA (p < 0.05). Increases in AP sites were also found in liver DNA of rats exposed for 10 and 30 weeks (p < 0.05) but not for 50 and 70 weeks to 5 ppm of NNK in their drinking water. Levels of N7POBG were significantly correlated with AP sites in rats treated with NNK. In rats treated with 14 ppm (S)-NNN in their drinking water for 10 weeks, increased AP site formation compared to controls was observed in oral and nasal respiratory mucosa DNA (p < 0.05). No significant increase in AP sites was found in human lung and leukocyte DNA of cigarette smokers compared to nonsmokers, although AP sites in leukocyte DNA were significantly correlated with urinary levels of the NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). This is the first study to use mass spectrometry based methods to examine AP site formation by carcinogenic tobacco-specific nitrosamines in laboratory animals and to evaluate AP sites in DNA of smokers and nonsmokers.
Assuntos
DNA/efeitos dos fármacos , Nicotiana/química , Nitrosaminas/análise , Produtos do Tabaco/análise , Animais , Dano ao DNA , Humanos , Leucócitos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Espectrometria de Massas , Nitrosaminas/administração & dosagem , Nitrosaminas/farmacologia , não Fumantes , Ratos , Ratos Endogâmicos F344 , FumantesRESUMO
Mass spectrometry-based DNA adductomics is an emerging approach for the human biomonitoring of hazardous chemicals. A mass spectral database of DNA adducts will be created for the scientific community to investigate the associations between chemical exposures, DNA damage, and disease risk.
Assuntos
Adutos de DNA/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Poluentes Ambientais/farmacologia , Compostos Orgânicos/farmacologia , Dano ao DNA , Poluentes Ambientais/química , Humanos , Espectrometria de Massas , Compostos Orgânicos/químicaRESUMO
Nitrogen mustards (NM) are an important class of chemotherapeutic drugs used in the treatment of malignant tumors. The accepted mechanism of action of NM is through the alkylation of DNA bases. NM-adducts block DNA replication in cancer cells by forming cytotoxic DNA interstrand cross-links. We previously characterized several adducts formed by reaction of bis(2-chloroethyl)ethylamine (NM) with calf thymus (CT) DNA and the MDA-MB-231 mammary tumor cell line. The monoalkylated N7-guanine (NM-G) adduct and its cross-link (G-NM-G) were major lesions. The cationic NM-G undergoes a secondary reaction through depurination to form an apurinic (AP) site or reacts with hydroxide to yield the stable ring-opened N5-substituted formamidopyrimidine (NM-Fapy-G) adduct. Both of these lesions are mutagenic and may contribute to secondary tumor development, a major clinical limitation of NM chemotherapy. We established a kinetic model with NM-treated female mice and measured the rates of formation and removal of NM-DNA adducts and AP sites. We employed liquid chromatography-mass spectrometry (LC-MS) to measure NM-G, G-NM-G, and NM-Fapy-G adducts in liver, lung, and spleen over 168 h. NM-G reached a maximum level within 6 h in all organs and then rapidly declined. The G-NM-G cross-link and NM-FapyG were more persistent with half-lives over three-times longer than NM-G. We quantified AP site lesions in the liver and showed that NM treatment increased AP site levels by 3.7-fold over the basal levels at 6 h. The kinetics of AP site repair closely followed the rate of removal of NM-G; however, AP sites remained 1.3-fold above basal levels 168 h post-treatment with NM. Our data provide new insights into NM-induced DNA damage and biological processing in vivo. The quantitative measurement of the spectrum of NM adducts and AP sites can serve as biomarkers in the design and assessment of the efficacy of novel chemotherapeutic regimens.
Assuntos
Adutos de DNA/química , Adutos de DNA/efeitos dos fármacos , Mecloretamina/química , Mecloretamina/toxicidade , Animais , Feminino , Cinética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Distribuição TecidualRESUMO
The apurinic/apyrimidinic (AP) site is a common lesion of DNA damage. The levels of AP sites reported in the literature cover a wide range, which is primarily due to the artifactual generation or loss of AP sites during processing of the DNA. Herein, we have developed a method for quantitating AP sites with a largely reduced level of artifacts by derivatizing AP sites before DNA isolation. A rapid digestion of nuclear protein was performed to minimize enzymatic DNA repair, followed by direct derivatization of AP sites in the nuclear lysate with O-(pyridin-3-yl-methyl)hydroxylamine, yielding an oxime derivative that is stable through the subsequent DNA processing steps. Quantitation was done using highly selective and sensitive liquid chromatography-tandem mass spectrometry, with a limit of quantitation at 2.2 lesions per 108 nucleotides (nts, 0.9 fmol on column). The method was applied in vivo to measure AP sites in rats undergoing oxidative stress [liver, 3.31 ± 0.47/107 nts (dosed) vs 0.91 ± 0.06/107 nts (control); kidney, 1.60 ± 0.07/107 nts (dosed) vs 1.13 ± 0.12/107 nts (control)]. The basal AP level was significantly lower than literature values. The method was also used to measure AP sites induced by the chemotherapeutic nitrogen mustard in vitro.
Assuntos
Núcleo Celular/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/isolamento & purificação , DNA/metabolismo , Rim/metabolismo , Fígado/metabolismo , Animais , Bovinos , Núcleo Celular/química , DNA/química , Rim/citologia , Fígado/citologia , Masculino , Ratos , Ratos Endogâmicos F344RESUMO
Frequent exposure to chemicals in the environment, diet, and endogenous electrophiles leads to chemical modification of DNA and the formation of DNA adducts. Some DNA adducts can induce mutations during cell division and, when occurring in critical regions of the genome, can lead to the onset of disease, including cancer. The targeted analysis of DNA adducts over the past 30 years has revealed that the human genome contains many types of DNA damages. However, a long-standing limitation in conducting DNA adduct measurements has been the inability to screen for the total complement of DNA adducts derived from a wide range of chemicals in a single assay. With the advancement of high-resolution mass spectrometry (MS) instrumentation and new scanning technologies, nontargeted "omics" approaches employing data-dependent acquisition and data-independent acquisition methods have been established to simultaneously screen for multiple DNA adducts, a technique known as DNA adductomics. However, notable challenges in data processing must be overcome for DNA adductomics to become a mature technology. DNA adducts occur at low abundance in humans, and current softwares do not reliably detect them when using common MS data acquisition methods. In this perspective, we discuss contemporary computational tools developed for feature finding of MS data widely utilized in the disciplines of proteomics and metabolomics and highlight their limitations for conducting nontargeted DNA-adduct biomarker discovery. Improvements to existing MS data processing software and new algorithms for adduct detection are needed to develop DNA adductomics into a powerful tool for the nontargeted identification of potential cancer-causing agents.
Assuntos
Adutos de DNA , Biomarcadores , Biologia Computacional , Análise de Dados , Humanos , Espectrometria de Massas , Fluxo de Trabalho , Xenobióticos/toxicidadeRESUMO
Reactive oxygen species (ROS) and chronic inflammation contribute to DNA damage of many organs, including the prostate. ROS cause oxidative damage to biomolecules, such as lipids, proteins, and nucleic acids, resulting in the formation of toxic and mutagenic intermediates. Lipid peroxidation (LPO) products covalently adduct to DNA and can lead to mutations. The levels of LPO DNA adducts reported in humans range widely. However, a large proportion of the DNA adducts may be attributed to artifact formation during the steps of isolation and nuclease digestion of DNA. We established a method that mitigates artifacts for most LPO adducts during the processing of DNA. We have applied this methodology to measure LPO DNA adducts in the genome of prostate cancer patients, employing ultrahigh-performance liquid chromatography electrospray ionization ion trap multistage mass spectrometry. Our preliminary data show that DNA adducts of acrolein, 6-hydroxy-1,N2-propano-2'-deoxyguanosine (6-OH-PdG) and 8-hydroxy-1,N2-propano-2'-deoxyguanosine (8-OH-PdG) (4-20 adducts per 107 nucleotides) are more prominent than etheno (ε) adducts (<0.5 adducts per 108 nucleotides). This analytical methodology will be used to examine the correlation between oxidative stress, inflammation, and LPO adduct levels in patients with benign prostatic hyperplasia and prostate cancer.