Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 297, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509481

RESUMO

Black flounder (Paralichthys orbignyanus, Pleuronectiformes) is a commercially significant marine fish with promising aquaculture potential in Argentina. Despite extensive studies on Black flounder aquaculture, its limited genetic information available hampers the crucial role genetics plays in the development of this activity. In this study, we first employed Illumina sequencing technology to sequence the entire genome of Black flounder. Utilizing two independent libraries-one from a female and another from a male-with 150 bp paired-end reads, a mean insert length of 350 bp, and over 35 X-fold coverage, we achieved assemblies resulting in a genome size of ~ 538 Mbp. Analysis of the assemblies revealed that more than 98% of the core genes were present, with more than 78% of them having more than 50% coverage. This indicates a somehow complete and accurate genome at the coding sequence level. This genome contains 25,231 protein-coding genes, 445 tRNAs, 3 rRNAs, and more than 1,500 non-coding RNAs of other types. Black flounder, along with pufferfishes, seahorses, pipefishes, and anabantid fish, displays a smaller genome compared to most other teleost groups. In vertebrates, the number of transposable elements (TEs) is often correlated with genome size. However, it remains unclear whether the sizes of introns and exons also play a role in determining genome size. Hence, to elucidate the potential factors contributing to this reduced genome size, we conducted a comparative genomic analysis between Black flounder and other teleost orders to determine if the small genomic size could be explained by repetitive elements or gene features, including the whole genome genes and introns sizes. We show that the smaller genome size of flounders can be attributed to several factors, including changes in the number of repetitive elements, and decreased gene size, particularly due to lower amount of very large and small introns. Thus, these components appear to be involved in the genome reduction in Black flounder. Despite these insights, the full implications and potential benefits of genome reduction in Black flounder for reproduction and aquaculture remain incompletely understood, necessitating further research.


Assuntos
Linguados , Linguado , Animais , Masculino , Feminino , Linguado/genética , Linguados/genética , Tamanho do Genoma , Mapeamento Cromossômico , Genômica
2.
Microb Ecol ; 85(3): 862-874, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35701635

RESUMO

Environmental changes and human activities can alter the structure and diversity of aquatic microbial communities. In this work, we analyzed the bacterial community dynamics of an urban stream to understand how these factors affect the composition of river microbial communities. Samples were taken from a stream situated in Buenos Aires, Argentina, which flows through residential, peri-urban horticultural, and industrial areas. For sampling, two stations were selected: one influenced by a series of industrial waste treatment plants and horticultural farms (PL), and the other influenced by residential areas (R). Microbial communities were analyzed by sequence analysis of 16S rRNA gene amplicons along an annual cycle. PL samples showed high nutrient content compared with R samples. The diversity and richness of the R site were more affected by seasonality than those of the PL site. At the amplicon sequence variants level, beta diversity analysis showed a differentiation between cool-season (fall and winter) and warm-season (spring and summer) samples, as well as between PL and R sites. This demonstrated that there is spatial and temporal heterogeneity in the composition of the bacterial community, which should be considered if a bioremediation strategy is applied. The taxonomic composition analysis also revealed a differential seasonal cycle of phototrophs and chemoheterotrophs between the sampling sites, as well as different taxa associated with each sampling site. This analysis, combined with a comparative analysis of global rivers, allowed us to determine the genera Arcobacter, Simplicispira, Vogesella, and Sphingomonas as potential bioindicators of anthropogenic disturbance.


Assuntos
Efeitos Antropogênicos , Rios , Humanos , Rios/microbiologia , Estações do Ano , RNA Ribossômico 16S/genética , Bactérias/genética
3.
J Chem Inf Model ; 62(15): 3577-3588, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853201

RESUMO

Protein-protein interactions (PPIs) are essential, and modulating their function through PPI-targeted drugs is an important research field. PPI sites are shallow protein surfaces readily accessible to the solvent, thus lacking a proper pocket to fit a drug, while their lack of endogenous ligands prevents drug design by chemical similarity. The development of PPI-blocking compounds is, therefore, a tough challenge. Mixed solvent molecular dynamics has been shown to reveal protein-ligand interaction hot spots in protein active sites by identifying solvent sites (SSs). Furthermore, our group has shown that SSs significantly improve protein-ligand docking. In the present work, we extend our analysis to PPI sites. In particular, we analyzed water, ethanol, and phenol-derived sites in terms of their capacity to predict protein-drug and protein-protein interactions. Subsequently, we show how this information can be incorporated to improve both protein-ligand and protein-protein docking. Finally, we highlight the presence of aromatic clusters as key elements of the corresponding interactions.


Assuntos
Proteínas , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química , Solventes/química
4.
J Chem Inf Model ; 62(7): 1723-1733, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35319884

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis, has 11 eukaryotic-like serine/threonine protein kinases, which play essential roles in cell growth, signal transduction, and pathogenesis. Protein kinase G (PknG) regulates the carbon and nitrogen metabolism by phosphorylation of the glycogen accumulation regulator (GarA) protein at Thr21. Protein kinase B (PknB) is involved in cell wall synthesis and cell shape, as well as phosphorylates GarA but at Thr22. While PknG seems to be constitutively activated and recognition of GarA requires phosphorylation in its unstructured tail, PknB activation is triggered by phosphorylation of its activation loop, which allows binding of the forkhead-associated domain of GarA. In the present work, we used molecular dynamics and quantum-mechanics/molecular mechanics simulations of the catalytically competent complex and kinase activity assays to understand PknG/PknB specificity and reactivity toward GarA. Two hydrophobic residues in GarA, Val24 and Phe25, seem essential for PknG binding and allow specificity for Thr21 phosphorylation. On the other hand, phosphorylated residues in PknB bind Arg26 in GarA and regulate its specificity for Thr22. We also provide a detailed analysis of the free energy profile for the phospho-transfer reaction and show why PknG has a constitutively active conformation not requiring priming phosphorylation in contrast to PknB. Our results provide new insights into these two key enzymes relevant for Mtb and the mechanisms of serine/threonine phosphorylation in bacteria.


Assuntos
Mycobacterium tuberculosis , Proteínas de Bactérias/química , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina , Treonina/metabolismo
5.
BMC Infect Dis ; 21(1): 394, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926375

RESUMO

BACKGROUND: Whole-genome sequencing has shown that the Mycobacterium tuberculosis infection process can be more heterogeneous than previously thought. Compartmentalized infections, exogenous reinfections, and microevolution are manifestations of this clonal complexity. The analysis of the mechanisms causing the microevolution -the genetic variability of M. tuberculosis at short time scales- of a parental strain into clonal variants with a patient is a relevant issue that has not been yet completely addressed. To our knowledge, a whole genome sequence microevolution analysis in a single patient with inadequate adherence to treatment has not been previously reported. CASE PRESENTATION: In this work, we applied whole genome sequencing analysis for a more in-depth analysis of the microevolution of a parental Mycobacterium tuberculosis strain into clonal variants within a patient with poor treatment compliance in Argentina. We analyzed the whole-genome sequence of 8 consecutive Mycobacterium tuberculosis isolates obtained from a patient within 57-months of intermittent therapy. Nineteen mutations (9 short-term, 10 fixed variants) emerged, most of them associated with drug resistance. The first isolate was already resistant to isoniazid, rifampicin, and streptomycin, thereafter the strain developed resistance to fluoroquinolones and pyrazinamide. Surprisingly, isolates remained susceptible to the pro-drug ethionamide after acquiring a frameshift mutation in ethA, a gene required for its activation. We also found a novel variant, (T-54G), in the 5' untranslated region of whiB7 (T-54G), a region allegedly related to kanamycin resistance. Notably, discrepancies between canonical and phage-based susceptibility testing to kanamycin were previously found for the isolate harboring this mutation. In our patient, microevolution was mainly driven by drug selective pressure. Rare short-term mutations fixed together with resistance-conferring mutations during therapy. CONCLUSIONS: This report highlights the relevance of whole-genome sequencing analysis in the clinic for characterization of pre-XDR and MDR resistance profile, particularly in patients with incomplete and/or intermittent treatment.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Argentina , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino , Humanos , Isoniazida/uso terapêutico , Adesão à Medicação , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico , Estreptomicina/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Sequenciamento Completo do Genoma
6.
Bioinformatics ; 35(19): 3836-3838, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825370

RESUMO

SUMMARY: The performance of docking calculations can be improved by tuning parameters for the system of interest, e.g. biasing the results towards the formation of relevant protein-ligand interactions, such as known ligand pharmacophore or interaction sites derived from cosolvent molecular dynamics. AutoDock Bias is a straightforward and easy to use script-based method that allows the introduction of different types of user-defined biases for fine-tuning AutoDock4 docking calculations. AVAILABILITY AND IMPLEMENTATION: AutoDock Bias is distributed with MGLTools (since version 1.5.7), and freely available on the web at http://ccsb.scripps.edu/mgltools/ or http://autodockbias.wordpress.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Viés , Sítios de Ligação , Ligantes
7.
J Chem Inf Model ; 60(2): 821-832, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31714778

RESUMO

Protein kinases (PKs) are allosteric enzymes that play an essential role in signal transduction by regulating a variety of key cellular processes. Most PKs suffer conformational rearrangements upon phosphorylation that strongly enhance the catalytic activity. Generally, it involves the movement of the phosphorylated loop toward the active site and the rotation of the whole C-terminal lobe. However, not all kinases undergo such a large configurational change: The MAPK extracellular signal-regulated protein kinases ERK1 and ERK2 achieve a 50 000 fold increase in kinase activity with only a small motion of the C-terminal region. In the present work, we used a combination of molecular simulation tools to characterize the conformational landscape of ERK2 in the active (phosphorylated) and inactive (unphosphorylated) states in solution in agreement with NMR experiments. We show that the chemical reaction barrier is strongly dependent on ATP conformation and that the "active" low-barrier configuration is subtly regulated by phosphorylation, which stabilizes a key salt bridge between the conserved Lys52 and Glu69 belonging to helix-C and promotes binding of a second Mg ion. Our study highlights that the on-off switch embedded in the kinase fold can be regulated by small, medium, and large conformational changes.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Sequência Conservada , Dissulfetos/química , Ativação Enzimática , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica
8.
J Chem Inf Model ; 60(2): 833-842, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31923359

RESUMO

Histidine kinases (HK) of bacterial two-component systems represent a hallmark of allosterism in proteins, being able to detect a signal through the sensor domain and transmit this information through the protein matrix to the kinase domain which, once active, autophosphorylates a specific histidine residue. Inactive-to-active transition results in a large conformational change that moves the kinase on top of the histidine. In the present work, we use several molecular simulation techniques (Molecular Dynamics, Hybrid QM/MM, and constant pH molecular dynamics) to study the activation and autophosphorylation reactions in L. plantarum WalK, a cis-acting HK. In agreement with previous results, we show that the chemical step requires tight coupling with the conformational step in order to maintain the histidine phosphoacceptor in the correct tautomeric state, with a reactive δ-nitrogen. During the conformational transition, the kinase domain is never released and walks along the HK helix axis, breaking and forming several conserved residue-based contacts. The phosphate transfer reaction is concerted in the transition state region and is catalyzed through the stabilization of the negative developing charge of transferring phosphate along the reaction.


Assuntos
Histidina Quinase/química , Histidina Quinase/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/enzimologia , Fosforilação , Conformação Proteica , Termodinâmica
9.
Nucleic Acids Res ; 46(D1): D413-D418, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29106651

RESUMO

Available genomic data for pathogens has created new opportunities for drug discovery and development to fight them, including new resistant and multiresistant strains. In particular structural data must be integrated with both, gene information and experimental results. In this sense, there is a lack of an online resource that allows genome wide-based data consolidation from diverse sources together with thorough bioinformatic analysis that allows easy filtering and scoring for fast target selection for drug discovery. Here, we present Target-Pathogen database (http://target.sbg.qb.fcen.uba.ar/patho), designed and developed as an online resource that allows the integration and weighting of protein information such as: function, metabolic role, off-targeting, structural properties including druggability, essentiality and omic experiments, to facilitate the identification and prioritization of candidate drug targets in pathogens. We include in the database 10 genomes of some of the most relevant microorganisms for human health (Mycobacterium tuberculosis, Mycobacterium leprae, Klebsiella pneumoniae, Plasmodium vivax, Toxoplasma gondii, Leishmania major, Wolbachia bancrofti, Trypanosoma brucei, Shigella dysenteriae and Schistosoma Smanosoni) and show its applicability. New genomes can be uploaded upon request.


Assuntos
Anti-Infecciosos/química , Biologia Computacional/métodos , Bases de Dados Factuais , Genoma Bacteriano , Genoma Fúngico , Genoma Helmíntico , Genoma de Protozoário , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Sítios de Ligação , Doenças Transmissíveis/tratamento farmacológico , Descoberta de Drogas , Humanos , Internet , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Software
10.
J Chem Inf Model ; 59(8): 3572-3583, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31373819

RESUMO

Virtual screening of large compound databases, looking for potential ligands of a target protein, is a major tool in computer-aided drug discovery. Throughout the years, different techniques such as similarity searching, pharmacophore matching, or molecular docking have been applied with the aim of finding hit compounds showing appreciable affinity. Molecular dynamics simulations in mixed solvents have been shown to identify hot spots relevant for protein-drug interaction, and implementations based on this knowledge were developed to improve pharmacophore matching of small molecules, binding free-energy estimations, and docking performance in terms of pose prediction. Here, we proved in a retrospective manner that cosolvent-derived pharmacophores from molecular dynamics (solvent sites) improve the performance of docking-based virtual screening campaigns. We applied a biased docking scheme based on solvent sites to nine relevant target proteins that have a set of known ligands or actives and compounds that are, presumably, nonbinders (decoys). Our results show improvement in virtual screening performance compared to traditional docking programs both at a global level, with up to 35% increase in areas under the receiver operating characteristic curve, and in early stages, with up to a 7-fold increase in enrichment factors at 1%. However, the improvement in pose prediction of actives was less profound. The presented application makes use of the AutoDock Bias method and is the only cosolvent-derived pharmacophore technique that employs its knowledge both in the ligand conformational search algorithm and the final affinity scoring for virtual screening purposes.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Simulação de Acoplamento Molecular , Proteínas/química , Proteínas/metabolismo , Solventes/química , Ligantes , Conformação Proteica , Interface Usuário-Computador
11.
Biochem Biophys Res Commun ; 498(2): 288-295, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28859976

RESUMO

Tuberculosis (TB) is a chronic disease caused by the bacillus Mycobacterium tuberculosis(Mtb) and remains a leading cause of mortality worldwide. The bacteria has an external wall which protects it from being killed, and the enzymes involved in the biosynthesis of the cell wall components have been proposed as promising targets for future drug development efforts. Cyclopropane Mycolic Acid Synthases (CMAS) constitute a group of ten homologous enzymes which belong to the mycolic acid biosynthesis pathway. These enzymes have S-adenosyl-l-methionine (SAM) dependent methyltransferase activity with a peculiarity, each one of them has strong substrate selectivity and reaction specificity, being able to produce among other things cyclopropanes or methyl-alcohol groups from the lipid olefin group. How each CMAS processes its substrate and how the specificity and selectivity are encoded in the protein sequence and structure, is still unclear. In this work, by using a combination of modeling tools, including comparative modeling, docking, all-atom MD and QM/MM methodologies we studied in detail the reaction mechanism of cmaA2, mmaA4, and mmaA1 CMAS and described the molecular determinants that lead to different products. We have modeled the protein-substrate complex structure and determined the free energy pathway for the reaction. The combination of modeling tools at different levels of complexity allows having a complete picture of the CMAS structure-activity relationship.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Oxigenases de Função Mista/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/metabolismo , Bicarbonatos/metabolismo , Domínio Catalítico , Ciclopropanos/química , Ciclopropanos/metabolismo , Metiltransferases/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
12.
Biochem Biophys Res Commun ; 498(2): 305-312, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28911864

RESUMO

Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Fosforilação , Conformação Proteica , Domínios Proteicos
13.
Fungal Genet Biol ; 112: 31-39, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27746189

RESUMO

Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design.


Assuntos
Basidiomycota/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Argentina , Basidiomycota/isolamento & purificação , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Folhas de Planta/microbiologia , Análise de Sequência de DNA
14.
Molecules ; 23(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544890

RESUMO

Simulations of molecular dynamics (MD) are playing an increasingly important role in structure-based drug discovery (SBDD). Here we review the use of MD for proteins in aqueous solvation, organic/aqueous mixed solvents (MDmix) and with small ligands, to the classic SBDD problems: Binding mode and binding free energy predictions. The simulation of proteins in their condensed state reveals solvent structures and preferential interaction sites (hot spots) on the protein surface. The information provided by water and its cosolvents can be used very effectively to understand protein ligand recognition and to improve the predictive capability of well-established methods such as molecular docking. The application of MD simulations to the study of the association of proteins with drug-like compounds is currently only possible for specific cases, as it remains computationally very expensive and labor intensive. MDmix simulations on the other hand, can be used systematically to address some of the common tasks in SBDD. With the advent of new tools and faster computers we expect to see an increase in the application of mixed solvent MD simulations to a plethora of protein targets to identify new drug candidates.


Assuntos
Desenho de Fármacos , Simulação de Dinâmica Molecular , Proteínas/química , Solventes/química , Descoberta de Drogas , Ligantes , Proteínas/metabolismo
15.
J Chem Inf Model ; 57(8): 1741-1746, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28700230

RESUMO

Virtual screening is a powerful methodology to search for new small molecule inhibitors against a desired molecular target. Usually, it involves evaluating thousands of compounds (derived from large databases) in order to select a set of potential binders that will be tested in the wet-lab. The number of tested compounds is directly proportional to the cost, and thus, the best possible set of ligands is the one with the highest number of true binders, for the smallest possible compound set size. Therefore, methods that are able to trim down large universal data sets enriching them in potential binders are highly appreciated. Here we present LigQ, a free webserver that is able to (i) determine best structure and ligand binding pocket for a desired protein, (ii) find known binders, as well as potential ligands known to bind to similar protein domains, (iii) most importantly, select a small set of commercial compounds enriched in potential binders, and (iv) prepare them for virtual screening. LigQ was tested with several proteins, showing an impressive capacity to retrieve true ligands from large data sets, achieving enrichment factors of over 10%. LigQ is available at http://ligq.qb.fcen.uba.ar/ .


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Internet , Proteínas/metabolismo , Software , Sítios de Ligação , Bases de Dados de Produtos Farmacêuticos , Ligantes , Ligação Proteica , Proteínas/química , Interface Usuário-Computador
16.
J Chem Inf Model ; 57(4): 846-863, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28318252

RESUMO

One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 µs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/metabolismo , Solventes/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica , Água/química
17.
Biochemistry ; 55(12): 1909-17, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26950759

RESUMO

The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Animais , Proteína Quinase 1 Ativada por Mitógeno/química , Mutação/fisiologia , Oligonucleotídeos/química , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Ratos
18.
J Am Chem Soc ; 138(28): 8742-51, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27348048

RESUMO

Intrinsically disordered proteins (IDPs) are a set of proteins that lack a definite secondary structure in solution. IDPs can acquire tertiary structure when bound to their partners; therefore, the recognition process must also involve protein folding. The nature of the transition state (TS), structured or unstructured, determines the binding mechanism. The characterization of the TS has become a major challenge for experimental techniques and molecular simulations approaches since diffusion, recognition, and binding is coupled to folding. In this work we present atomistic molecular dynamics (MD) simulations that sample the free energy surface of the coupled folding and binding of the transcription factor c-myb to the cotranscription factor CREB binding protein (CBP). This process has been recently studied and became a model to study IDPs. Despite the plethora of available information, we still do not know how c-myb binds to CBP. We performed a set of atomistic biased MD simulations running a total of 15.6 µs. Our results show that c-myb folds very fast upon binding to CBP with no unique pathway for binding. The process can proceed through both structured or unstructured TS's with similar probabilities. This finding reconciles previous seemingly different experimental results. We also performed Go-type coarse-grained MD of several structured and unstructured models that indicate that coupled folding and binding follows a native contact mechanism. To the best of our knowledge, this is the first atomistic MD simulation that samples the free energy surface of the coupled folding and binding processes of IDPs.

19.
Bioinformatics ; 31(22): 3697-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26198103

RESUMO

MOTIVATION: Water molecules are key players for protein folding and function. On the protein surface, water is not placed randomly, but display instead a particular structure evidenced by the presence of specific water sites (WS). These WS can be derived and characterized using explicit water Molecular Dynamics simulations, providing useful information for ligand binding prediction and design. Here we present WATCLUST, a WS determination and analysis tool running on the VMD platform. The tool also allows direct transfer of the WS information to Autodock program to perform biased docking. AVAILABILITY AND IMPLEMENTATION: The WATCLUST plugin and documentation are freely available at http://sbg.qb.fcen.uba.ar/watclust/. CONTACT: marcelo@qi.fcen.uba.ar, adrian@qi.fcen.uba.ar.


Assuntos
Desenho de Fármacos , Proteínas/química , Software , Água/química , Proteínas de Escherichia coli/química , Simulação de Dinâmica Molecular
20.
PLoS Comput Biol ; 11(3): e1004051, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25741692

RESUMO

Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function.


Assuntos
Amidas/química , Cisteína/química , Proteínas/química , Proteínas/metabolismo , Ácidos Sulfênicos/química , Amidas/metabolismo , Biologia Computacional , Cisteína/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Ácidos Sulfênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa