Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Am Chem Soc ; 146(12): 8031-8042, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478877

RESUMO

The effects of temperature and chemical environment on a pentanuclear cyanide-bridged, trigonal bipyramidal molecular paramagnet have been investigated. Using element- and oxidation state-specific near-ambient pressure X-ray photoemission spectroscopy (NAP-XPS) to probe charge transfer and second order, nonlinear vibrational spectroscopy, which is sensitive to symmetry changes based on charge (de)localization coupled with DFT, a detailed picture of environmental effects on charge-transfer-induced spin transitions is presented. The molecular cluster, Co3Fe2(tmphen)6(µ-CN)6(t-CN)6, abbrev. Co3Fe2, shows changes in electronic behavior depending on the chemical environment. NAP-XPS shows that temperature changes induce a metal-to-metal charge transfer (MMCT) in Co3Fe2 between a Co and Fe center, while cycling between ultrahigh vacuum and 2 mbar of water at constant temperature causes oxidation state changes not fully captured by the MMCT picture. Sum frequency generation vibrational spectroscopy (SFG-VS) probes the role of the cyanide ligand, which controls the electron (de)localization via the superexchange coupling. Spectral shifts and intensity changes indicate a change from a charge delocalized, Robin-Day class II/III high spin state to a charge-localized, class I low spin state consistent with DFT. In the presence of a H-bonding solvent, the complex adopts a localized electronic structure, while removal of the solvent delocalizes the charges and drives an MMCT. This change in Robin-Day classification of the complex as a function of chemical environment results in reversible switching of the dipole moment, analogous to molecular multiferroics. These results illustrate the important role of the chemical environment and solvation on underlying charge and spin transitions in this and related complexes.

2.
Inorg Chem ; 63(24): 11450-11458, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38823006

RESUMO

Two Ru(II) complexes, [Ru(pydppn)(bim)(py)]2+ [2; pydppn = 3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene; bim = 2,2'-bisimidazole; py = pyridine] and [Ru(pydppn)(Me4bim)(py)]2+ [3; Me4bim = 2,2'-bis(4,5-dimethylimidazole)], were synthesized and characterized, and their photophysical properties, DNA binding, and photocleavage were evaluated and compared to [Ru(pydppn)(bpy)(py)]2+ (1; bpy = 2,2'-bipyridine). Complexes 2 and 3 exhibit broad 1MLCT (metal-to-ligand charge transfer) transitions with maxima at ∼470 nm and shoulders at ∼525 and ∼600 nm that extend to ∼800 nm. These bands are red-shifted relative to those of 1, attributed to the π-donating ability of the bim and Me4bim ligands. A strong signal at 550 nm is observed in the transient absorption spectra of 1-3, previously assigned as arising from a pydppn-centered 3ππ* state, with lifetimes of ∼19 µs for 1 and 2 and ∼270 ns for 3. A number of methods were used to characterize the mode of binding of 1-3 to DNA, including absorption titrations, thermal denaturation, relative viscosity changes, and circular dichroism, all of which point to the intercalation of the pydpppn ligand between the nucleobases. The photocleavage of plasmid pUC19 DNA was observed upon the irradiation of 1-3 with visible and red light, attributed to the sensitized generation of 1O2 by the complexes. These findings indicate that the bim ligand, together with pydppn, serves to shift the absorption of Ru(II) complexes to the photodynamic therapy window, 600-900 nm, and also extend the excited state lifetimes for the efficient production of cytotoxic singlet oxygen.


Assuntos
Complexos de Coordenação , DNA , Fotoquimioterapia , Fármacos Fotossensibilizantes , Plasmídeos , Rutênio , Oxigênio Singlete , DNA/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Rutênio/química , Rutênio/farmacologia , Plasmídeos/química , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Estrutura Molecular , Clivagem do DNA/efeitos dos fármacos , Clivagem do DNA/efeitos da radiação
3.
Inorg Chem ; 63(17): 7973-7983, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38616353

RESUMO

Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.


Assuntos
Catepsinas , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes , Rutênio , Humanos , Rutênio/química , Rutênio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Luz Verde
4.
J Phys Chem A ; 128(3): 599-610, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38227956

RESUMO

A series of 22 Ru(II) complexes of the type [Ru(tpy)(L)(L')]n+, where tpy is the tridentate ligand 2,2';6,2″-terpyridine, L represents bidentate ligands with varying electron-donating ability, and L' is acetonitrile (1a-11a) or pyridine (1b-11b), were investigated. The dissociation of acetonitrile occurs from the 3MLCT state in 1a-11a, such that it does not require the population of a 3LF state. Electrochemistry and spectroscopic data demonstrate that the ground states of these series do not differ significantly. Franck-Condon line-shape analysis of the 77 K emission data shows no significant differences between the emitting 3MLCT states in both series. Arrhenius analysis of the temperature dependence of 3MLCT lifetimes shows that the energy barrier (Ea) to thermally populating a 3LF state from a lower energy 3MLCT state is significantly higher in the pyridine than in the CH3CN series, consistent with the photostability of complexes 1b-11b, which do not undergo pyridine photodissociation under our experimental conditions. Importantly, these results demonstrate that ligand photodissociation of pyridine in 1b-11b does not take place directly from the 3MLCT state, as is the case for 1a-11a. These findings have potential impact on the rational design of complexes for a number of applications, including photochemotherapy, dye-sensitized solar cells, and photocatalysis.

5.
J Am Chem Soc ; 145(50): 27348-27357, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055041

RESUMO

A new series of Rh2(II,II) complexes with the formula cis-[Rh2(DTolF)2(bpnp)(L)]2+, where bpnp = 2,7-bis(2-pyridyl)-1,8-naphthyridine, DTolF = N,N'-di(p-tolyl) formamidinate, and L = pdz (pyridazine; 2), cinn (cinnoline; 3), and bncn (benzo[c]cinnoline; 4), were synthesized from the precursor cis-[Rh2(DTolF)2(bpnp)(CH3CN)2]2+ (1). The first reduction couple in 2-4 is localized on the bpnp ligand at approximately -0.52 V vs Ag/AgCl in CH3CN (0.1 M TBAPF6), followed by reduction of the corresponding diazine ligand. Complex 1 exhibits a Rh2(δ*)/DTolF → bpnp(π*) metal/ligand-to-ligand charge-transfer (1ML-LCT) absorption with a maximum at 767 nm (ε = 1800 M-1 cm-1). This transition is also present in the spectra of 2-4, overlaid with the Rh2(δ*)/DTolF → L(π*) 1ML-LCT bands at 516 nm in 2 (L = pdz), 640 nm in 3 (L = cinn), and 721 nm in 4 (L = bncn). Complexes 2 and 3 exhibit Rh2(δ*)/DTolF → bpnp 3ML-LCT excited states with lifetimes, τ, of 3 and 5 ns, respectively, in CH3CN, whereas the lowest energy 3ML-LCT state in 4 is Rh2(δ*)/DTolF → bncn in nature with τ = 1 ns. Irradiation of 4 with 670 nm light in DMF in the presence of 0.1 M TsOH (p-toluene sulfonic acid) and 30 mM BNAH (1-benzyl-1,4-dihydronicotinamide) results in the production of H2 with a turnover number (TON) of 16 over 24 h. The axial capping of the Rh2(II,II) bimetallic core with the bpnp ligand prevents the formation of an Rh-H hydride intermediate. These results show that the observed photocatalytic reactivity is localized on the bncn ligand, representing the first example of ligand-centered H2 production.

6.
Inorg Chem ; 62(39): 15927-15935, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733276

RESUMO

Two new complexes, [Ru(tpy)(qdppz)](PF6)2 (1; qdppz = 2-(quinolin-8-yl)dipyrido[3,2-a:2',3'-c]phenazine, tpy = 2,2':6',2″-terpyridine) and [Ru(qdppz)2](PF6)2 (2), were investigated for their potential use as phototherapeutic agents through their ability to photosensitize the production of singlet oxygen, 1O2, upon irradiation with visible light. The complexes exhibit strong Ru(dπ) → qdppz(π*) metal-to-ligand charge transfer (MLCT) absorption with maxima at 485 and 495 nm for 1 and 2 in acetone, respectively, red-shifted from the Ru(dπ) → tpy(π*) absorption at 470 nm observed for [Ru(tpy)2]2+ (3) in the same solvent. Complexes 1 and 3 are not luminescent at room temperature, but 3MLCT emission is observed for 2 with maximum at 690 nm (λexc = 480 nm) in acetone. The lifetimes of the 3MLCT states of 1 and 2 were measured using transient absorption spectroscopy to be ∼9 and 310 ns in methanol, respectively, at room temperature (λexc = 490 nm). The bite angle of the qdppz ligand is closer to octahedral geometry than that of tpy, resulting in the longer lifetime of 2 as compared to those of 1 and 3. Arrhenius treatment of the temperature dependence of the luminescence results in similar activation energies, Ea, from the 3MLCT to the 3LF (ligand-field) state for the two complexes, 2520 cm-1 in 1 and 2400 cm-1 in 2. However, the pre-exponential factors differ by approximately two orders of magnitude, 2.3 × 1013 s-1 for 1 and 1.4 × 1011 s-1 for 2, which, together with differences in the Huang-Rhys factors, lead to markedly different 3MLCT lifetimes. Although both 1 and 2 intercalate between the DNA bases, only 2 is able to photocleave DNA owing to its 1O2 production upon irradiation with ΦΔ = 0.69. The present work highlights the profound effect of the ligand bite angle on the electronic structure, providing guidelines for extending the lifetime of 3MLCT Ru(II) complexes with tridentate ligands, a desired property for a number of applications.

7.
Inorg Chem ; 62(7): 3305-3320, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36758158

RESUMO

Probing the activity of cytochrome P450 3A4 (CYP3A4) is critical for monitoring the metabolism of pharmaceuticals and identifying drug-drug interactions. A library of Ir(III) probes that detect occupancy of the CYP3A4 active site were synthesized and characterized. These probes show selectivity for CYP3A4 inhibition, low cellular toxicity, Kd values as low as 9 nM, and are highly emissive with lifetimes up to 3.8 µs in cell growth media under aerobic conditions. These long emission lifetimes allow for time-resolved gating to distinguish probe from background autofluorescence from growth media and live cells. X-ray crystallographic analysis revealed structure-activity relationships and the preference or indifference of CYP3A4 toward resolved stereoisomers. Ir(III)-based probes show emission quenching upon CYP3A4 binding, then emission increases following displacement with CYP3A4 inhibitors or substrates. Importantly, the lead probes inhibit the activity of CYP3A4 at concentrations as low as 300 nM in CYP3A4-overexpressing HepG2 cells that accurately mimic human hepatic drug metabolism. Thus, the Ir(III)-based agents show promise as novel chemical tools for monitoring CYP3A4 active site occupancy in a high-throughput manner to gain insight into drug metabolism and drug-drug interactions.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Relação Estrutura-Atividade
8.
J Am Chem Soc ; 144(44): 20177-20182, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282955

RESUMO

The excited states of the series [Ru(tpy)(L)(CH3CN)]n+ (1-11) (n = 1, 2) containing bidentate ligands L with varying electron-donating ability were characterized through Arrhenius analysis of the temperature dependence of their excited-state lifetimes. Complexes 1-11 undergo photoinduced CH3CN dissociation upon 450 nm irradiation with ligand exchange quantum yields that increase with the energy barrier to populating a dissociative triplet ligand field (3LF) state from the lowest-energy triplet metal-to-ligand charge transfer (3MLCT) excited state. Combined with DFT calculations, the data indicate that ligand photodissociation in 1-11 occurs directly from the 3MLCT state instead of a 3LF state. This finding is in contrast to the generally accepted mechanism for ligand photodissociation in Ru(II) complexes and indicates that alternative pathways for photoinduced ligand dissociation are available. These results can widely impact design principles for applications that require ligand photodissociation, such as photochemotherapy and photocatalysis, as well as for those where photosubstitution is undesirable, such as solar energy conversion.


Assuntos
Rutênio , Ligantes , Acetonitrilas , Elétrons
9.
J Am Chem Soc ; 144(44): 20267-20277, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305871

RESUMO

A new method to install a proton relay that enhances the reactivity near an active catalytic site for H2 production is reported, afforded by the electrochemical reduction and protonation of one of the ligands in the paddlewheel Rh2(II,II) hydrogen evolution complex, cis-[Rh2(DPhF)2(bncn)2]2+ (Rh-bncn; DPhF = N,N'-diphenylformamidinate, bncn = benzo[c]cinnoline). An electrochemical reversible prewave is observed for Rh-bncn at potentials more positive than the first bncn-centered reduction couple in the presence of strong acids, observed at -0.72 V vs Fc+/0 (Fc = ferrocene) in the cyclic voltammograms (CVs) in DMF (0.1 M TBAPF6). The origin of this prewave is shown to arise from a precatalytic transformation that originates from a concerted proton-electron transfer (CPET) event occurring at one of the bridging bncn ligands. Through electrochemical analysis, CV simulations, and electronic structure calculations, a reaction mechanism is elucidated. In this system, the electrochemically formed N-H bond on the reduced bncn ligand serves as a proton relay in the H2 formation reaction through a cooperative interligand pathway involving one of the bridging DPhF ligands after a second reduction step, accessible at approximately -1.15 V vs Fc+/0. Since calculations show that hydrogen evolution takes place at the bridging ligands and does not involve the dirhodium core, it is predicted that more abundant metal centers can be incorporated into this ligand scaffold, leading to new candidates for electrocatalytic hydrogen reduction. As such, this work delineates a new design strategy to incorporate proton relays in molecular bimetallic hydrogen evolution electrocatalysts to achieve higher efficiency.


Assuntos
Hidrogênio , Hidrogenase , Hidrogênio/química , Prótons , Hidrogenase/química , Ligantes , Catálise
10.
Chemistry ; 28(24): e202104430, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35235227

RESUMO

Tumor associated macrophages (TAMs) suppress the cancer immune response and are a key target for immunotherapy. The effects of ruthenium and rhodium complexes on TAMs have not been well characterized. To address this gap in the field, a panel of 22 dirhodium and ruthenium complexes were screened against three subtypes of macrophages, triple-negative breast cancer and normal breast tissue cells. Experiments were carried out in 2D and biomimetic 3D co-culture experiments with and without irradiation with blue light. Leads were identified with cell-type-specific toxicity toward macrophage subtypes, cancer cells, or both. Experiments with 3D spheroids revealed complexes that sensitized the tumor models to the chemotherapeutic doxorubicin. Cell surface exposure of calreticulin, a known facilitator of immunogenic cell death (ICD), was increased upon treatment, along with a concomitant reduction in the M2-subtype classifier arginase. Our findings lay a strong foundation for the future development of ruthenium- and rhodium-based chemotherapies targeting TAMs.


Assuntos
Ródio , Rutênio , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Imunoterapia , Ródio/farmacologia , Rutênio/farmacologia , Macrófagos Associados a Tumor
11.
Inorg Chem ; 61(35): 13673-13677, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35994607

RESUMO

Cytochromes P450 (CYPs) are a superfamily of enzymes responsible for biosynthesis and drug metabolism. Monitoring the activity of CYP3A4, the major human drug-metabolizing enzyme, is vital for assessing the metabolism of pharmaceuticals and identifying harmful drug-drug interactions. Existing probes for CYP3A4 are irreversible turn-on substrates that monitor activity at specific time points in end-point assays. To provide a more dynamic approach, we designed, synthesized, and characterized emissive Ir(III) and Ru(II) complexes that allow monitoring of the CYP3A4 active-site occupancy in real time. In the bound state, probe emission is quenched by the active-site heme. Upon displacement from the active site by CYP3A4-specific inhibitors or substrates, these probes show high emission turn-on. Direct probe binding to the CYP3A4 active site was confirmed by X-ray crystallography. The lead Ir(III)-based probe has nanomolar Kd and high selectivity for CYP3A4, efficient cellular uptake, and low toxicity in CYP3A4-overexpressing HepG2 cells.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Domínio Catalítico , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/química , Heme , Humanos , Irídio
12.
J Am Chem Soc ; 143(3): 1610-1617, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33426881

RESUMO

A new Rh2(II,II) dimer has been synthesized and anchored onto a NiO photocathode. The dirhodium complex acts as both the sensitizer to inject holes into NiO and as catalyst for the production of hydrogen. The single-molecule design circumvents limitations of the conventional multicomponent approach with separate sensitizer and catalyst, thus simplifying the hydrogen production pathway and reducing energy losses associated with additional intermolecular charge transfer steps. The Rh2(II,II) complex absorbs strongly from the ultraviolet throughout the visible range and tails into the near-IR to ∼800 nm, permitting absorption of a significantly greater portion of the solar irradiance as compared to traditional dyes used in dye-sensitized solar cells and photoelectrosynthesis cells. The irradiation of the Rh2-NiO photoelectrode with 655 nm light (53 mW cm-2) results in a photocurrent that reaches 52 µA cm-2 at -0.2 V vs Ag/AgCl in the presence of p-toluenesulfonic acid (0.1 M), with Faradaic efficiencies of H2 production up to 85 ± 5% after 2.5 h without photoelectrode degradation. This work presents the first single-molecule photocatalyst, acting as both the light absorber and catalytic center on NiO, able to generate hydrogen from acidic solutions with red light when anchored to a p-type semiconductor, providing a promising new system for solar fuel production.

13.
J Am Chem Soc ; 143(24): 9191-9205, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110801

RESUMO

We report the synthesis and photochemical and biological characterization of the first selective and potent metal-based inhibitors of cytochrome P450 3A4 (CYP3A4), the major human drug metabolizing enzyme. Five Ru(II)-based derivatives were prepared from two analogs of the CYP3A4 inhibitor ritonavir, 4 and 6: [Ru(tpy)(L)(6)]Cl2 (tpy = 2,2':6',2″-terpyridine) with L = 6,6'-dimethyl-2,2'-bipyridine (Me2bpy; 8), dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn; 10) and 3,6-dimethyl-10,15-diphenylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2Ph2dppn; 11), [Ru(tpy)(Me2bpy)(4)]Cl2 (7) and [Ru(tpy)(Me2dppn)(4)]Cl2 (9). Photochemical release of 4 or 6 from 7-11 was demonstrated, and the spectrophotometric evaluation of 7 showed that it behaves similarly to free 4 (type II heme ligation) after irradiation with visible light but not in the dark. Unexpectedly, the intact Ru(II) complexes 7 and 8 were found to inhibit CYP3A4 potently and specifically through direct binding to the active site without heme ligation. Caged inhibitors 9-11 showed dual action properties by combining photoactivated dissociation of 4 or 6 with efficient 1O2 production. In prostate adenocarcinoma DU-145 cells, compound 9 had the best synergistic effect with vinblastine, the anticancer drug primarily metabolized by CYP3A4 in vivo. Thus, our study establishes a new paradigm in CYP inhibition using metalated complexes and suggests possible utilization of photoactive CYP3A4 inhibitory compounds in clinical applications, such as enhancement of therapeutic efficacy of anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Rutênio/química
14.
Chemistry ; 27(17): 5379-5387, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33104237

RESUMO

Dinuclear rhodium complexes are attractive candidates as homogeneous panchromatic photosensitizers and photocatalysts. Modification of the coordination sphere of the Rh2 (II,II) compounds results in photophysical and redox properties that are highly desirable for electro- and photocatalysis. Specifically, Rh2 (II,II) complexes have shown promising catalytic activity towards proton reduction to generate H2 , a clean fuel, and for the selective reduction of CO2 to HCOOH. In addition, paddlewheel Rh2 (II,II) complexes provide robust platforms for the design of efficient and stable single-component photocatalysts. Optimization of the Rh2 (II,II) catalysts is crucial to realize their future application in devices or systems designed for the production of fuels from sunlight.

15.
Inorg Chem ; 60(24): 18964-18974, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34846875

RESUMO

The synthesis, chemical and biological characterization of seven Ru(II) polypyridyl complexes containing acetylacetonate (acac) ligands are reported. Electronic absorption spectra were determined and electrochemical potentials consistent with Ru(III/II) couples ranging from +0.60 to +0.73 V vs Ag/AgCl were measured. A series of complexes were screened against MDA-MB-231, DU-145, and MCF-10A cell lines to evaluate their cytotoxicities in cancer and normal cell lines. Although most complexes were either nontoxic or equipotent in cancer cells and normal cell lines, compound 1, [Ru(dpqy)(acac)(py)](PF6), where dqpy is 2,6-di(quinolin-2-yl)pyridine, showed up to 2.5:1.0 selectivity for cancer as compared to normal cells, along with nanomolar EC50 values in MDA-MB-231 cells. Lipophilicity, determined as the octanol/water partition coefficient, log Po/w, ranged from -0.33 (0.06) to 1.15 (0.10) for the complexes. Although cytotoxicity was not correlated with electrochemical potentials, a moderate linear correlation between lipophilicity and toxicities was observed. Cell death mechanism studies indicated that several of the Ru-acac compounds, including 1, induce apoptosis in MDA-MB-231 cells.


Assuntos
Apoptose
16.
Inorg Chem ; 59(4): 2255-2265, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31999106

RESUMO

The cis- and trans-dirhodium(II,II) complexes cis-[Rh2(µ-DTolF)2(µ-np)(MeCN)4][BF4]2 (1; DTolF = N,N'-di-p-tolylformamidinate and np = 1,8-naphthyridine), cis- and trans-[Rh2(µ-DTolF)2(µ-qxnp)(MeCN)3][BF4]2 [2 and 3, respectively, where qxnp = 2-(1,8-naphthyridin-2-yl)quinoxaline], and trans-[Rh2(µ-DTolF)2(µ-qxnp)2][BF4]2 (4) were synthesized and characterized. A new synthetic methodology was developed that consists of the sequential addition of π-accepting axially blocking ligands to favor formation of the first example of a bis-substituted formamidinate-bearing trans product. Isolation of the intermediates 2 and 3 provides insight into the mechanistic requirements for obtaining 4 and the cis analogue, cis-[Rh2(µ-DTolF)2(µ-qxnp)2][BF4]2 (5). Density functional theory calculations provide support for the synthetic mechanism and proposed intermediates. The metal/ligand-to-ligand charge-transfer (ML-LCT) absorption maximum of the trans complex 4 at 832 nm is red-shifted by 1173 cm-1 and exhibits shorter lifetimes of the 1ML-LCT and 3ML-LCT excited states, 3 ps and 0.40 ns, respectively, compared to those of the cis analogue 5. The shorter excited-state lifetimes of 4 are attributed to the longer Rh-Rh bond of 2.4942(8) Å relative to that in 5, 2.4498(2) Å. A longer metal-metal bond reflects a decreased overlap of the Rh atoms, which leads to more accessible metal-centered excited states for radiationless deactivation. The 3ML-LCT excited states of 4 and 5 undergo reversible bimolecular charge transfer with the electron donor p-phenylenediamine when irradiated with low-energy light. These results indicate that trans isomers are a source of unexplored tunability for potential p-type semiconductor applications and, given their distinct geometric arrangement, constitute useful building blocks for supramolecular architectures with potentially interesting photophysical properties.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Teoria da Densidade Funcional , Cinética , Ligantes , Luz , Modelos Químicos , Estrutura Molecular , Ródio/química , Estereoisomerismo
17.
Inorg Chem ; 59(6): 3919-3933, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32096986

RESUMO

We report the synthesis and photochemical and biological characterization of Ru(II) complexes containing π-expansive ligands derived from dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine (Me2dppn) adorned with flanking aryl substituents. Late-stage Suzuki couplings produced Me2dppn ligands substituted at the 10 and 15 positions with phenyl (5), 2,4-dimethylphenyl (6), and 2,4-dimethoxyphenyl (7) groups. Complexes of the general formula [Ru(tpy)(L)(py)](PF6)2 (8-10), where L = 4-7, were characterized and shown to have dual photochemotherapeutic (PCT) and photodynamic therapy (PDT) behavior. Quantum yields for photodissociation of monodentate pyridines from 8-10 were about 3 times higher than that of parent complex [Ru(tpy)(Me2dppn)(py)](PF6)2 (1), whereas quantum yields for singlet oxygen (1O2) production were ∼10% lower than that of 1. Transient absorption spectroscopy indicates that 8-10 possess long excited state lifetimes (τ = 46-50 µs), consistent with efficient 1O2 production through population and subsequent decay of ligand-centered 3ππ* excited states. Complexes 8-10 displayed greater lipophilicity relative to 1 and association to DNA but do not intercalate between the duplex base pairs. Complexes 1 and 8-10 showed photoactivated toxicity in breast and prostate cancer cell lines with phototherapeutic indexes, PIs, as high as >56, where the majority of cell death was achieved 4 h after treatment with Ru(II) complexes and light. Flow cytometric data and rescue experiments were consistent with necrotic cell death mediated by the production of reactive oxygen species, especially 1O2. Collectively, this study confirms that DNA intercalation by Ru(II) complexes with π-expansive ligands is not required to achieve photoactivated cell death.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/efeitos da radiação , DNA/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Radical Hidroxila/metabolismo , Ligantes , Luz , Necrose/induzido quimicamente , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/efeitos da radiação , Rutênio/química , Oxigênio Singlete/metabolismo
18.
J Chem Phys ; 153(6): 064302, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287456

RESUMO

Visible light excitation of the neutral complex [RuII(phen)2(bps)]0 (phen = 1,10-phenanthroline, bps = 4,7-biphenylsulfonate-1,10-phenanthroline) results in the formation of a triplet metal-to-ligand charge transfer excited state with a lifetime, τo, of 4.6 µs, where the promoted electron is localized on the bps ligand, 3*[RuIII(phen)2(bps•-)]0. The complex is dynamically quenched by di-n-heptyl-viologen, C7C7V2+, in solution and when the acceptor is embedded into negatively charged and neutral micelles. Addition of NaCl to solutions containing C7C7V2+ bound to negatively charged dodecyl sulfate sodium dodecyl sulfate micelles results in a monotonic increase in the quenching rate constant from kq = 6.0 × 107 to 1.7 × 109 M-1 s-1. In contrast, kq was independent of [NaCl] and diffusion limited in water and neutral micellar solution. Activated rate constants, kact, revealed that electron transfer was slowed by a factor of 450 when occurring in negatively charged micelle solution relative to neutral octaethylene glycol monododecyl ether (C12E8) micelles. In the 3*[RuIII(phen)2(bps•-)]0 excited state, the bps ligand is oriented away from the anionic micelle surface potential, -141 ≤ ψ ≤ -67 mV, due to a Frumkin effect operative in the deceleration of kact. Frumkin corrected rate constants were within a factor of three of those measured in C12E8 solution. Distance-dependent reorganization energies resulting from the orientation vary from 0.47 eV to 0.35 eV, while electronic coupling decreases by a factor of 10. The collective data show that orientation control over bimolecular rate constants in micellar solution can be achieved by screening micellar surface charges.

19.
Acc Chem Res ; 51(6): 1415-1421, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29870227

RESUMO

Metal complexes have many proven applications in the caging and photochemical release of biologically active compounds. Photocaging groups derived from Ru(II) traditionally have been composed of ancillary ligands that are planar and bi- or tridentate, such as 2,2'-bipyridine (bpy), 2,2':6',2″-terpyridine (tpy), and 1,10-phenanthroline (phen). Complexes bearing ancillary ligands with denticities higher than three represent a new class of Ru(II)-based photocaging groups that are grossly underdeveloped. Because high-denticity ancillary ligands provide the ability to increase the structural rigidity and control the stereochemistry, our groups initiated a research program to explore the applications of such ligands in Ru(II)-based photocaging. Ru(TPA), bearing the tetradentate ancillary ligand tris(2-pyridylmethyl)amine (TPA), has been successfully utilized to effectively cage nitriles and aromatic heterocycles. Nitriles and aromatic heterocycles caged by the Ru(TPA) group show excellent stability in aqueous solutions in the dark, and the complexes can selectively release the caged molecules upon irradiation with light. Ru(TPA) is applicable as a photochemical agent to offer precise spatiotemporal control over biological activity without undesired toxicity. In addition, Ru(II) polypyridyl complexes with desired photochemical properties can be synthesized and identified by solid-phase synthesis, and the resulting complexes show properties to similar to those of complexes obtained by solution-phase synthesis. Density functional theory (DFT) calculations reveal that orbital mixing between the π* orbitals of the ancillary ligand and the Ru-N dσ* orbital is essential for ligand photodissociation in these complexes. Furthermore, the introduction of steric bulk enhances the photoliability of the caged molecules, validating that steric effects can largely influence the quantum efficiency of photoinduced ligand exchange in Ru(II) polypyridyl complexes. Recently, two new photocaging groups, Ru(cyTPA) and Ru(1-isocyTPQA), have been designed and synthesized for caging of nitriles and aromatic heterocycles, and these complexes exhibit unique photochemical properties distinct from those derived from Ru(TPA). Notably, the unusually greater quantum efficiency for the ligand exchange in [Ru(1-isocyTPQA)(MeCN)2](PF6)2, Φ400 = 0.033(3), uncovers a trans-type effect in the triplet metal-to-ligand charge transfer (3MLCT) state that enhances photoinduced ligand exchange in a new manner. DFT calculations and ultrafast transient spectroscopy reveal that the lowest-energy triplet state in [Ru(1-isocyTPQA)(MeCN)2](PF6)2 is a highly mixed 3MLCT/3ππ* excited state rather than a triplet metal-centered ligand-field (3LF) excited state; the latter is generally accepted for ligand photodissociation. In addition, Mulliken spin density calculations indicate that a majority of the spin density in [Ru(1-isocyTPQA)(MeCN)2](PF6)2 is localized on the isoquinoline arm, which is opposite to the cis MeCN, rather than on the ruthenium center. This significantly weakens the Ru-N6 ( cis MeCN) bond, which then promotes the ligand photodissociation. This newly discovered effect gives a clearer perception of the interplay between the 3MLCT and 3LF excited states of Ru(II) polypyridyl complexes, which may be useful in the design and applications of ruthenium complexes in the areas of photoactivated drug delivery and photosensitizers.


Assuntos
Complexos de Coordenação/química , Piridinas/química , Rutênio/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Teoria da Densidade Funcional , Ligantes , Modelos Químicos , Nitrilas/síntese química , Nitrilas/química , Nitrilas/efeitos da radiação , Piridinas/síntese química , Piridinas/efeitos da radiação
20.
J Phys Chem A ; 123(13): 2650-2660, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30896168

RESUMO

A series of six [Ru(bpy)2(NHC-R)]+ complexes were synthesized and characterized, where bpy = 2,2'-bipyridine and NHC-R is an N-heterocyclic carbene covalently linked to a carbanion with a number of substituents, R = -OMe (1), -Me (2), -H (3), -Cl (4), -CO2Et (5), and -NO2 (6). The effects of these strongly σ-donating NHC-R ligands on the ground-state electronic structure and on the excited-state character and dynamics were probed using electrochemistry, TD-DFT calculations, and steady-state absorption and emission spectroscopies, along with ultrafast transient absorption and time-resolved IR measurements. The excitation of 1-5 with a 400 nm pulse (irf = 85 fs) results in the population of a high energy singlet state, Sn, that rapidly intersystem crosses into a high-lying triplet state, Tn. Over the course of 7-22 ps, Tn relaxes to the lowest lying triplet state, T1, which is metal/ligand-to-ligand charge transfer, 3Ru(d)/NHC(π) → bpy(π*) in character. These 3ML-LCT states decay to regenerate the ground state with lifetimes, τ, that range from <8 to 15 ns at 298 K and from 10 to 23 ns at 77 K in CH3CN. Both the excited-state lifetime at 77 K and the Tn → T1 rate of internal conversion of 1-5 are dependent on the substituent R, and the latter correlates with the Hammett parameter (σ+p) of the NHC-R ligand. Excitation of 1-5 with low energy light, 550-670 nm, does not result in the population of Tn, as only T1 is observed. In the case of 6, excitation is expected to populate a 1Ru(d)/NHC(π) → NHC(π*) state localized on the NHC-NO2 ligand, which decays to a higher energy 3Ru(d)/NHC(π) → NHC(π*) state followed by internal conversion to the 3Ru(d)/NHC(π) → bpy(π*) T1 state with τ = 250 ps; the population of both states is independent of excitation wavelength in 6. This work demonstrates that the introduction of one NHC-R ligand in these complexes permits the population of a higher energy triplet state that decays to T1 in the picosecond time range. The relatively slow Tn → T1 internal conversion in these complexes makes  the population of the higher-energy state potentially useful for more efficient charge injection into semiconductors for solar energy conversion or to aid in accessing dissociative metal-centered states for drug delivery. Overall, this work shows the ability to synthetically access valuable excited-state dynamics using the two different Ru-C bonds of the asymmetric NHC-R ligands.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa