Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(14): 147202, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702204

RESUMO

We report an experimental and theoretical study of the low-temperature specific heat C and magnetic susceptibility χ of the layered anisotropic triangular-lattice spin-1/2 Heisenberg antiferromagnets Cs_{2}CuCl_{4-x}Br_{x} with x=0, 1, 2, and 4. We find that the ratio J^{'}/J of the exchange couplings ranges from 0.32 to ≈0.78, implying a change (crossover or quantum phase transition) in the materials' magnetic properties from one-dimensional (1D) behavior for J^{'}/J<0.6 to two-dimensional (2D) behavior for J^{'}/J≈0.78. For J^{'}/J<0.6, realized for x=0, 1, and 4, we find a magnetic contribution to the low-temperature specific heat, C_{m}∝T, consistent with spinon excitations in 1D spin-1/2 Heisenberg antiferromagnets. Remarkably, for x=2, where J^{'}/J≈0.78 implies a 2D magnetic character, we also observe C_{m}∝T. This finding, which contrasts the prediction of C_{m}∝T^{2} made by standard spin-wave theories, shows that Fermi-like statistics also plays a significant role for the magnetic excitations in spin-1/2 frustrated 2D antiferromagnets.

2.
Rev Sci Instrum ; 93(11): 113902, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461492

RESUMO

We report the realization of an advanced technique for measuring relative length changes ΔL/L of mm-sized samples under the control of temperature (T) and helium-gas pressure (P). The system, which is an extension of the apparatus described in the work of Manna et al. [Rev. Sci. Instrum. 83, 085111 (2012)], consists of two 4He-bath cryostats, each of which houses a pressure cell and a capacitive dilatometer. The interconnection of the pressure cells, the temperature of which can be controlled individually, opens up various modes of operation to perform measurements of ΔL/L under the variation of temperature and pressure. Special features of this apparatus include the possibility (1) to increase the pressure to values far in excess of the external pressure reservoir, (2) to substantially improve the pressure stability during temperature sweeps, (3) to enable continuous pressure sweeps with both decreasing and increasing pressure, and (4) to simultaneously measure the dielectric constant of the pressure-transmitting medium, viz., helium, εr He(T,P), along the same T-P trajectory as that used for taking the ΔL(T, P)/L data. The performance of the setup is demonstrated by measurements of relative length changes (ΔL/L)T at T = 180 K of single crystalline NaCl upon continuously varying the pressure in the range 6 ≤ P ≤ 40 MPa.

3.
Nat Commun ; 5: 5169, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25346338

RESUMO

Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex-antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S=½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa