Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ecol Appl ; 32(1): e02480, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674399

RESUMO

In this era of global environmental change and rapid regime shifts, managing core areas that species require to survive and persist is a grand challenge for conservation. Wildlife monitoring data are often limited or local in scale. The emerging ability to map and track spatial regimes (i.e., the spatial manifestation of state transitions) using advanced geospatial vegetation data has the potential to provide earlier warnings of habitat loss because many species of conservation concern strongly avoid spatial regime boundaries. Using 23 yr of data for the lek locations of Greater Prairie-Chicken (Tympanuchus cupido; GPC) in a remnant grassland ecosystem, we demonstrate how mapping changes in the boundaries between grassland and woodland spatial regimes provide a spatially explicit early warning signal for habitat loss for an iconic and vulnerable grassland-obligate known to be highly sensitive to woody plant encroachment. We tested whether a newly proposed metric for the quantification of spatial regimes captured well-known responses of GPC to woody plant expansion into grasslands. Resource selection functions showed that the grass:woody spatial regime boundary strength explained the probability of 80% of relative lek occurrence, and GPC strongly avoided grass:woody spatial regime boundaries at broad scales. Both findings are consistent with well-known expectations derived from GPC ecology. These results provide strong evidence for vegetation-derived delineations of spatial regimes to serve as generalized signals of early warning for state transitions that have major consequences to biodiversity conservation. Mapping spatial regime boundaries over time provided interpretable early warnings of habitat loss. Woody plant regimes displaced grassland regimes starting from the edges of the study area and constricting inward. Correspondingly, the relative probability of lek occurrence constricted in space. Similarly, the temporal trajectory of spatial regime boundary strength increased over time and moved closer to the observed limit of GPC lek site usage relative to grass:woody boundary strength. These novel spatial metrics allow managers to rapidly screen for early warning signals of spatial regime shifts and adapt management practices to defend and grow habitat cores at broad scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Conservação dos Recursos Naturais/métodos , Pradaria , Poaceae , Madeira
2.
Ecol Appl ; 32(6): e2627, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397482

RESUMO

Fire has transformative effects on soil biological, chemical, and physical properties in terrestrial ecosystems around the world. While methods for estimating fire characteristics and associated effects aboveground have progressed in recent decades, there remain major challenges in characterizing soil heating and associated effects belowground. Overcoming these challenges is crucial for understanding how fire influences soil carbon storage, biogeochemical cycling, and ecosystem recovery. In this paper, we present a novel framework for characterizing belowground heating and effects. The framework includes (1) an open-source model to estimate fire-driven soil heating, cooling, and the biotic effects of heating across depths and over time (Soil Heating in Fire model; SheFire) and (2) a simple field method for recording soil temperatures at multiple depths using self-contained temperature sensor and data loggers (i.e., iButtons), installed along a wooden stake inserted into the soil (i.e., an iStake). The iStake overcomes many logistical challenges associated with obtaining temperature profiles using thermocouples. Heating measurements provide inputs to the SheFire model, and modeled soil heating can then be used to derive ecosystem response functions, such as heating effects on microorganisms and tissues. To validate SheFire estimates, we conducted a burn table experiment using iStakes to record temperatures that were in turn used to fit the SheFire model. We then compared SheFire predicted temperatures against measured temperatures at other soil depths. To benchmark iStake measurements against those recorded by thermocouples, we co-located both types of sensors in the burn table experiment. We found that SheFire demonstrated skill in interpolating and extrapolating soil temperatures, with the largest errors occurring at the shallowest depths. We also found that iButton sensors are comparable to thermocouples for recording soil temperatures during fires. Finally, we present a case study using iStakes and SheFire to estimate in situ soil heating during a prescribed fire and demonstrate how observed heating regimes would influence seed and tree root vascular cambium survival at different soil depths. This measurement-modeling framework provides a cutting-edge approach for describing soil temperature regimes (i.e., soil heating) through a soil profile and predicting biological responses.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Calefação , Humanos , Solo/química
3.
Proc Natl Acad Sci U S A ; 116(40): 19899-19904, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527247

RESUMO

Over the past several decades, environmental governance has made substantial progress in addressing environmental change, but emerging environmental problems require new innovations in law, policy, and governance. While expansive legal reform is unlikely to occur soon, there is untapped potential in existing laws to address environmental change, both by leveraging adaptive and transformative capacities within the law itself to enhance social-ecological resilience and by using those laws to allow social-ecological systems to adapt and transform. Legal and policy research to date has largely overlooked this potential, even though it offers a more expedient approach to addressing environmental change than waiting for full-scale environmental law reform. We highlight examples from the United States and the European Union of untapped capacity in existing laws for fostering resilience in social-ecological systems. We show that governments and other governance agents can make substantial advances in addressing environmental change in the short term-without major legal reform-by exploiting those untapped capacities, and we offer principles and strategies to guide such initiatives.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Política Ambiental , Biodiversidade , Ecologia , União Europeia , Governo , Meio Social , Estados Unidos
4.
J Environ Manage ; 303: 114141, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838383

RESUMO

Rangelands worldwide have experienced significant shifts from grass-dominated to woody-plant dominated states over the past century. In North America, these shifts are largely driven by overgrazing and landscape-scale fire suppression. Such shifts reduce productivity for livestock, can have broad-scale impacts to biodiversity, and are often difficult to reverse. Restoring grass dominance often involves restoring fire as an ecological process. However, many resprouting woody plants persist following disturbance, including fire, by resprouting from protected buds, rendering fire ineffective for reducing resprouting woody plant density. Recent research has shown that extreme fire (high-energy fires during periods of water stress) may reduce resprouting capacity. This previous research did not examine whether high-energy fires alone would be sufficient to cause mortality. We created an experimental framework for assessing the "buds-protection-resources" hypothesis of resprouting persistence under different fire energies. In July-August 2018 we exposed 48 individuals of a dominant resprouting woody plant in the region, honey mesquite (Prosopis glandulosa), to two levels of fire energy (high and low) and root crown exposure (exposed vs unexposed) and evaluated resprouting capacity. We censused basal and epicormic resprouts for two years following treatment. Water stress was moderate for several months leading up to fires but low in subsequent years. Epicormic and basal buds were somewhat protected from low- and high-energy fire. However, epicormic buds were protected in very few mesquites subjected to high-energy fires. High-energy fires decreased survival, caused loss of apical dominance, and left residual dead stems, which may increase chances of mortality from future fires. Basal resprout numbers were reduced by high-energy fires, which may have additional implications for long-term mesquite survival. While the buds, protection, and resources components of resprouter persistence all played a role in resprouting, high-energy fire decreased mesquite survival and reduced resprouting. This suggests that high-energy fires affect persistence mechanisms to different extents than low-energy fires. In addition, high-energy fires during normal rainfall can have negative impacts on resprouting capacity; water stress is not a necessary precursor to honey mesquite mortality from high-energy fire.


Assuntos
Incêndios , Prosopis , Ecossistema , Plantas , Madeira
5.
J Environ Manage ; 324: 116359, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206652

RESUMO

Historically, relying on plot-level inventories impeded our ability to quantify large-scale change in plant biomass, a key indicator of conservation practice outcomes in rangeland systems. Recent technological advances enable assessment at scales appropriate to inform management by providing spatially comprehensive estimates of productivity that are partitioned by plant functional group across all contiguous US rangelands. We partnered with the Sage Grouse and Lesser Prairie-Chicken Initiatives and the Nebraska Natural Legacy Project to demonstrate the ability of these new datasets to quantify multi-scale changes and heterogeneity in plant biomass following mechanical tree removal, prescribed fire, and prescribed grazing. In Oregon's sagebrush steppe, for example, juniper tree removal resulted in a 21% increase in one pasture's productivity and an 18% decline in another. In Nebraska's Loess Canyons, perennial grass productivity initially declined 80% at sites invaded by trees that were prescriptively burned, but then fully recovered post-fire, representing a 492% increase from nadir. In Kansas' Shortgrass Prairie, plant biomass increased 4-fold (966,809 kg/ha) in pastures that were prescriptively grazed, with gains highly dependent upon precipitation as evidenced by sensitivity of remotely sensed estimates (SD ± 951,308 kg/ha). Our results emphasize that next-generation remote sensing datasets empower land managers to move beyond simplistic control versus treatment study designs to explore nuances in plant biomass in unprecedented ways. The products of new remote sensing technologies also accelerate adaptive management and help communicate wildlife and livestock forage benefits from management to diverse stakeholders.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Árvores , Gado
6.
J Environ Manage ; 291: 112550, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965707

RESUMO

A key pursuit in contemporary ecology is to differentiate regime shifts that are truly irreversible from those that are hysteretic. Many ecological regime shifts have been labeled as irreversible without exploring the full range of variability in stabilizing feedbacks that have the potential to drive an ecological regime shift back towards a desirable ecological regime. Removing fire from grasslands can drive a regime shift to juniper woodlands that cannot be reversed using typical fire frequency and intensity thresholds, and has thus been considered irreversible. This study uses a unique, long-term experimental fire landscape co-dominated by grassland and closed-canopy juniper woodland to determine whether extreme fire can shift a juniper woodland regime back to grassland dominance using aboveground herbaceous biomass as an indicator of regime identity. We use a space-for-time substitute to quantify herbaceous biomass following extreme fire in juniper woodland up to 15 years post-fire and compare these with (i) 15 years of adjacent grassland recovery post-fire, (ii) unburned closed-canopy juniper woodland reference sites and (iii) unburned grassland reference sites. Our results show grassland dominance rapidly emerges following fires that operate above typical fire intensity thresholds, indicating that grassland-juniper woodlands regimes are hysteretic rather than irreversible. One year following fire, total herbaceous biomass in burned juniper stands was comparable to grasslands sites, having increased from 5 ± 3 g m-2 to 142 ± 42 g m-2 (+2785 ± 812 percent). Herbaceous dominance in juniper stands continued to persist 15-years after initial treatment, reaching a maximum of 337 ± 42 g m-2 eight years post-fire. In juniper encroached grasslands, fires that operate above typical fire intensity thresholds can provide an effective method to reverse juniper woodland regime shifts. This has major implications for regions where juniper encroachment threatens rancher-based economies and grassland biodiversity and provides an example of how to operationalize resilience theory to disentangle irreversible thresholds from hysteretic system behavior.


Assuntos
Ecossistema , Incêndios , Biodiversidade , Biomassa , Florestas , Pradaria
7.
Bioscience ; 70(1): 90-96, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31949318

RESUMO

Conservationists are increasingly convinced that coproduction of science enhances its utility in policy, decision-making, and practice. Concomitant is a renewed reliance on privately owned working lands to sustain nature and people. We propose a coupling of these emerging trends as a better recipe for conservation. To illustrate this, we present five elements of coproduction, contrast how they differ from traditional approaches, and describe the role of scientists in successful partnerships. Readers will find coproduction more demanding than the loading dock approach to science delivery but will also find greater rewards, relevance, and impact. Because coproduction is novel and examples of it are rare, we draw on our roles as scientists within the US Department of Agriculture-led Sage Grouse Initiative, North America's largest effort to conserve the sagebrush ecosystem. As coproduction and working lands evolve, traditional approaches will be replaced in order to more holistically meet the needs of nature and people.

8.
Front Ecol Environ ; 18(10): 576-583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408590

RESUMO

Addressing unexpected events and uncertainty represents one of the grand challenges of the Anthropocene, yet ecosystem management is constrained by existing policy and laws that were not formulated to deal with today's accelerating rates of environmental change. In many cases, managing for simple regulatory standards has resulted in adverse outcomes, necessitating innovative approaches for dealing with complex social-ecological problems. We highlight a project in the US Great Plains where panarchy - a conceptual framework that emerged from resilience - was implemented at project onset to address the continued inability to halt large-scale transition from grass-to-tree dominance in central North America. We review how panarchy was applied, the initial outcomes and evidence for policy reform, and the opportunities and challenges for which it could serve as a useful model to contrast with traditional ecosystem management approaches.

9.
Ecol Soc ; 25(1): 1-4, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32523609

RESUMO

Management frequently creates system conditions that poorly mimic the conditions of a desirable self-organizing regime. Such management is ubiquitous across complex systems of people and nature and will likely intensify as these systems face rapid change. However, it is highly uncertain whether the costs (unintended consequences, including negative side effects) of management but also social dynamics can eventually outweigh benefits in the long term. We introduce the term "coerced regime" to conceptualize this management form and tie it into resilience theory. The concept encompasses proactive and reactive management to maintain desirable and mitigate undesirable regime conditions, respectively. A coerced regime can be quantified through a measure of the amount of management required to artificially maintain its desirable conditions. Coerced regimes comprise "ghosts" of self-sustaining desirable system regimes but ultimately become "dead regimes walking" when these regimes collapse as soon as management is discontinued. We demonstrate the broad application of coerced regimes using distinct complex systems of humans and nature (human subjects, aquatic and terrestrial environments, agriculture, and global climate). We discuss commonalities and differences between these examples to identify tradeoffs between benefits and harms of management. The concept of coerced regimes can spur thinking and inform management about the duality of what we know and can envision versus what we do not know and therefore cannot envision-a pervasive sustainability conundrum as planet Earth swiftly moves towards a future without historical analogue.

10.
J Environ Manage ; 240: 368-373, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953990

RESUMO

Mechanisms underlying the loss of ecological resilience and a shift to an alternate regime with lower ecosystem service provisioning continues to be a leading debate in ecology, particularly in cases where evidence points to human actions and decision-making as the primary drivers of resilience loss and regime change. In this paper, we introduce the concept of coerced resilience as a way to explore the interplay among social power, ecological resilience, and fire management, and to better understand the unintended and undesired regime changes that often surprise ecosystem managers and governing officials. Philosophically, coercion is the opposite of freedom, and uses influence or force to gain compliance among local actors. The coercive force imposed by societal laws and policies can either enhance or reduce the potential to manage for essential structures and functions of ecological systems and, therefore, can greatly alter resilience. Using a classical fire-dependent regime shift from North America (tallgrass prairie to juniper woodland), and given that coercion is widespread in fire management today, we quantify relative differences in resilience that emerge in a policy-coerced fire system compared to a theoretical, policy-free fire system. Social coercion caused large departures in the fire conditions associated with alternative grassland and juniper woodland states, and the potential for a grassland state to emerge to dominance became increasingly untenable with fire as juniper cover increased. In contrast, both a treeless, grassland regime and a co-dominated grass-tree regime emerged across a wide range of fire conditions in the absence of policy controls. The severe coercive forcing present in fire management in the Great Plains, and corresponding erosion of grassland resilience, points to the need for transformative environmental governance and the rethinking of social power structures in modern fire policies.


Assuntos
Ecossistema , Incêndios , Ecologia , Florestas , Humanos , América do Norte
11.
Conserv Biol ; 32(4): 905-915, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29473208

RESUMO

A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate-change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate-change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4-month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long-term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing-season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario-impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate-change projections significantly depart from the current consensus.


Assuntos
Clima , Conservação dos Recursos Naturais , Agricultura , Mudança Climática , Estações do Ano
12.
Bull Environ Contam Toxicol ; 101(5): 543-548, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30357430

RESUMO

Different resilience concepts have different assumptions about system dynamics, which has implications for resilience-based environmental risk and impact assessment. Engineering resilience (recovery) dominates in the risk assessment literature but this definition does not account for the possibility of ecosystems to exist in multiple regimes. In this paper we discuss resilience concepts and quantification methods. Specifically, we discuss when a system fails to show engineering resilience after disturbances, indicating a shift to a potentially undesired regime. We show quantification methods that can assess the stability of this new regime to inform managers about possibilities to transform the system to a more desired regime. We point out the usefulness of an adaptive inference, modelling and management approach that is based on reiterative testing of hypothesis. This process facilitates learning about, and reduces uncertainty arising from risk and impact.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Medição de Risco/métodos
13.
Ecol Appl ; 26(1): 128-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27039515

RESUMO

In ecosystems with alternative stable states, restoration success can be thought of as overcoming the resilience of an undesirable state to promote an alternative state that yields greater ecosystem services. Since greater resilience of undesirable states translates into reduced restoration potential, quantifying differences in resilience can enhance restoration planning. In the context of shrub-encroached rangeland restoration, shrubland resilience is the capacity of a woody vegetated state to absorb management interventions designed to produce a more desirable grass-dominated state, and remain within its current regime. Therefore, differences in the resilience of a state can be quantified in a relative sense by measuring whether a state switches to an alternate state following perturbation or remains in its current stability domain. Here we designed an experimental manipulation to assess the contribution of soils to differences in the relative resilience of a shrub-invaded state. In this large-scale experiment, we repeated perturbations across a gradient of soil textures to inform restoration practitioners of differences in the relative resilience of shrubland occurring on different soil types to common rangeland restoration practices. On each soil type, we compared the relative ability of the shrubland state to withstand chemical and mechanical brush control treatments, commonly employed in this study region, to untreated controls. While the shrubland community composition did not differ prior to the study, its capacity to absorb and recover from brush removal treatments depended on soil type. Shrubland resilience to chemical and mechanical brush removal was highest on coarse soils. On these soils, brush removal temporarily restored grassland dominance, but woody plants quickly regained pretreatment levels of dominance. However, shrublands on fine soils did not recover following treatments, continuing to be grass-dominated for the duration of the study. This study highlights a simple approach for prioritizing restoration actions by mapping the locations of different soil attributes that support shrub-dominated states with differing levels of resilience to brush control. This experimental approach provides a basis for operationalizing resilience in restoration and prioritizing management actions across a range of environmental conditions, which is critical given the economic constraints associated with broad-scale mechanical and chemical interventions for rangeland restoration.


Assuntos
Ecossistema , Plantas/classificação , Solo/classificação , Incêndios , Herbicidas , Desenvolvimento Vegetal , Fatores de Tempo
14.
PLoS One ; 18(4): e0283816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040377

RESUMO

Woody encroachment is one of the greatest threats to grasslands globally, depleting a suite of ecosystem services, including forage production and grassland biodiversity. Recent evidence also suggests that woody encroachment increases wildfire danger, particularly in the Great Plains of North America, where highly volatile Juniperus spp. convert grasslands to an alternative woodland state. Spot-fire distances are a critical component of wildfire danger, describing the distance over which embers from one fire can cause a new fire ignition, potentially far away from fire suppression personnel. We assess changes in spot-fire distances as grasslands experience Juniperus encroachment to an alternative woodland state and how spot-fire distances differ under typical prescribed fire conditions compared to conditions observed during wildfire. We use BehavePlus to calculate spot-fire distances for these scenarios within the Loess Canyons Experimental Landscape, Nebraska, U.S.A., a 73,000-ha ecoregion where private-lands fire management is used to reduce woody encroachment and prevent further expansion of Juniperus fuels. We found prescribed fire used to control woody encroachment had lower maximum spot-fire distances compared to wildfires and, correspondingly, a lower amount of land area at risk to spot-fire occurrence. Under more extreme wildfire scenarios, spot-fire distances were 2 times higher in grasslands, and over 3 times higher in encroached grasslands and Juniperus woodlands compared to fires burned under prescribed fire conditions. Maximum spot-fire distance was 450% greater in Juniperus woodlands compared to grasslands and exposed an additional 14,000 ha of receptive fuels, on average, to spot-fire occurrence within the Loess Canyons Experimental Landscape. This study demonstrates that woody encroachment drastically increases risks associated with wildfire, and that spot fire distances associated with woody encroachment are much lower in prescribed fires used to control woody encroachment compared to wildfires.


Assuntos
Juniperus , Incêndios Florestais , Ecossistema , Pradaria , Florestas
15.
PLoS One ; 18(6): e0286621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267398

RESUMO

In agroecosystems, bats can provide a critical ecosystem service by consuming night-flying insect pests. However, many bats also face intense population pressures from human landscape modification, global change and novel diseases. To better understand the behavioral activity of different bat species with respect to space, time, habitat, and other bat species in this environment, we investigated species correlations in space and time over row crop agricultural fields. We used acoustic grids to document spatial and temporal co-occurrence or avoidance between bats and recorded eight species across the 10 field sites we sampled. All species significantly overlapped in two-dimensional space and displayed considerable temporal overlap during the night, yet often exhibited significantly different temporal activity patterns, suggesting fine scale partitioning behavior. Conversion of land to agriculture is likely to increase globally, making it critical to better understand how bat species interact with one another and the landscape to facilitate persistence in these human altered ecosystems.


Assuntos
Quirópteros , Ecossistema , Animais , Humanos , Árvores , Insetos , Comportamento Alimentar
16.
Sci Total Environ ; 858(Pt 1): 159696, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302438

RESUMO

Worldwide, tree or shrub dominated woodlands have encroached into herbaceous dominated grasslands. While very few studies have evaluated the impact of Eastern Redcedar (redcedar) encroachment on the water budget, none have analyzed the impact on water quality. In this study, we evaluated the impact of redcedar encroachment on the water budget in the Nebraska Sand Hills and how the decreased streamflow would increase nitrate and atrazine concentrations in the Platte River. We calibrated a Soil and Water Assessment Tool (SWAT model) for streamflow, recharge, and evapotranspiration. Using a moving window with a dilate morphological filter, encroachment scenarios of 11.9 %, 16.1 %, 28.0 %, 40.6 %, 57.5 %, 72.5 % and 100 % were developed and simulated by the calibrated model. At 11.9 % and 100 % encroachment, streamflow was reduced by 4.6 % and 45.5 %, respectively in the Upper Middle Loup River, a tributary to the Platte River. Percolation and deep aquifer recharge increased by 27 % and 26 % at 100 % encroachment. Streamflow in the Platte River, a major water source for Omaha and Lincoln, would decrease by 2.6 %, 5.5 % and 10.5 % for 28 %, 57.5 %, and 100 % encroachment of the Loup River watershed, respectively. This reduction in streamflow could increase nitrate and atrazine concentrations in the Platte River by 4 to 15 % and 4 to 30 %, respectively. While the density of redcedar is minimal, it is important to manage their encroachment to prevent reductions in streamflow and potential increases in pollutant concentrations.


Assuntos
Atrazina , Recursos Hídricos , Nitratos/análise , Nebraska , Rios
17.
Ecol Evol ; 11(18): 12714-12727, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34594533

RESUMO

Quantifying resource selection (an organism's disproportionate use of available resources) is essential to infer habitat requirements of a species, develop management recommendations, predict species responses to changing conditions, and improve our understanding of the processes that underlie ecological patterns. Because study sites, even within the same region, can differ in both the amount and the arrangement of cover types, our objective was to determine whether proximal sites can yield markedly different resource selection results for a generalist bird, northern bobwhite (Colinus virginianus). We used 5 years of telemetry locations and newly developed land cover data at two, geographically distinct but relatively close sites in the south-central semi-arid prairies of North America. We fit a series of generalized linear mixed models and used an information-theoretic model comparison approach to identify and compare resource selection patterns at each site. We determined that the importance of different cover types to northern bobwhite is site-dependent on relatively similar and nearby sites. Specifically, whether bobwhite selected for shrub cover and whether they strongly avoided trees, depended on the study site in focus. Additionally, the spatial scale of selection was nearly an order of magnitude different between the cover types. Our study demonstrates that-even for one of the most intensively studied species in the world-we may oversimplify resource selection by using a single study site approach. Managing the trade-offs between practical, generalized conclusions and precise but complex conclusions is one of the central challenges in applied ecology. However, we caution against setting recommendations for broad extents based on information gathered at small extents, even for a generalist species at adjacent sites. Before extrapolating information to areas beyond the data collected, managers should account for local differences in the availability, arrangement, and scaling of resources.

18.
Ecol Evol ; 11(11): 6620-6633, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141245

RESUMO

Increasingly, land managers have attempted to use extreme prescribed fire as a method to address woody plant encroachment in savanna ecosystems. The effect that these fires have on herbaceous vegetation is poorly understood. We experimentally examined immediate (<24 hr) bud response of two dominant graminoids, a C3 caespitose grass, Nassella leucotricha, and a C4 stoloniferous grass, Hilaria belangeri, following fires of varying energy (J/m2) in a semiarid savanna in the Edwards Plateau ecoregion of Texas. Treatments included high- and low-energy fires determined by contrasting fuel loading and a no burn (control) treatment. Belowground axillary buds were counted and their activities classified to determine immediate effects of fire energy on bud activity, dormancy, and mortality. High-energy burns resulted in immediate mortality of N. leucotricha and H. belangeri buds (p < .05). Active buds decreased following high-energy and low-energy burns for both species (p < .05). In contrast, bud activity, dormancy, and mortality remained constant in the control. In the high-energy treatment, 100% (n = 24) of N. leucotricha individuals resprouted while only 25% (n = 24) of H. belangeri individuals resprouted (p < .0001) 3 weeks following treatment application. Bud depths differed between species and may account for this divergence, with average bud depths for N. leucotricha 1.3 cm deeper than H. belangeri (p < .0001). Synthesis and applications: Our results suggest that fire energy directly affects bud activity and mortality through soil heating for these two species. It is imperative to understand how fire energy impacts the bud banks of grasses to better predict grass response to increased use of extreme prescribed fire in land management.

19.
PLoS One ; 15(6): e0234983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574224

RESUMO

The reduction and simplification of grasslands has led to the decline of numerous species of grassland fauna, particularly grassland-obligate birds. Prairie-chickens (Tympanuchus spp.) are an example of obligate grassland birds that have declined throughout most of their distribution and are species of conservation concern. Pyric herbivory has been suggested as a land management strategy for enhancing prairie-chicken habitat and stabilizing declining population trends. We assessed differences in vegetation structure created by pyric herbivory compared to fire-only treatments to determine whether pyric herbivory increased habitat heterogeneity for prairie-chickens, spatially or temporally. Our study was performed at four sites in the southern Great Plains, all within the current or historic distribution of either lesser (T. pallidicinctus), greater (T. cupido), or Attwater's (T. cupido attwateri) prairie-chickens. Key vegetation characteristics of grass cover and vegetation height in pyric herbivory and fire-only treatments were within the recommended range of values for prairie-chickens during their distinct life history stages. However, patches managed via pyric herbivory provided approximately 5% more forb cover than fire-only treatments for almost 30 months post-fire. Additionally, pyric herbivory extended the length of time bare ground was present after fires. Pyric herbivory also reduced vegetation height and biomass, with mean vegetation height in pyric herbivory treatments lagging behind fire-only treatments by approximately 15 months. Canopy cover in fire-only treatments exceeded levels recommended for prairie-chicken young within 12 months post-fire. However, canopy cover in pyric herbivory treatments never exceeded the maximum recommended levels. Overall, it appears that pyric herbivory improves vegetation characteristics reported as critical to prairie-chicken reproduction. Based on our results, we suggest pyric herbivory as a viable management technique to promote prairie-chicken habitat in the southern Great Plains, while still accommodating livestock production.


Assuntos
Galinhas/fisiologia , Conservação dos Recursos Naturais/métodos , Incêndios , Pradaria , Herbivoria , Animais , Biomassa
20.
Nat Sustain ; 2: 898-900, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33623828

RESUMO

Resilience scholarship continues to inspire opaque discourse and competing frameworks often inconsistent with the complexity inherent in social-ecological systems. We contend that competing conceptualizations of resilience are reconcilable, and that the core theory is useful for navigating sustainability challenges.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa