Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Med Dosim ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782687

RESUMO

This software assistant aims at calculating the dose-response relations of tumors and normal tissues, or clinically assessing already determined values by other researchers. It can also indicate the optimal dose prescription by optimizing the expected treatment outcome. The software is developed solely in python programming language, and it employs PSFL license for its Graphical User Interface (GUI), NUMPY, MATPLOTLIB, and SCIPY libraries. It comprises of two components. The first is the Dose-response relations derivation component, which takes as input the dose volume histograms (DVHs) of patients and their recorded responses regarding a given clinical endpoint to determine the parameters of different tumor control probability (TCP) or normal tissue complication probability (NTCP) models. The second is the Treatment Plan Assessment component, which uses the DVHs of a plan and the dose-response parameters values of the involved tumors and organs at risk (OARs) to calculate their expected responses. Additionally, the overall probabilities of benefit (PB), injury (PI) and complication-free tumor control (P+) are calculated. The software calculates rapidly the corresponding generalized equivalent uniform doses (gEUD) and biologically effective uniform doses (D‾‾) for the Lyman-Kutcher-Burman (LKB), parallel volume (PV) and relative seriality (RS) models respectively, determining the model parameters. In the Dose-Response Relations Derivation component, the software plots the dose-response curves of the irradiated organ with the relevant confidence internals along with the data of the patients with and without toxicity. It also calculates the odds ratio (OR) and the area under the curve (AUC) of different dose metrics or model parameter values against the individual patient outcomes to determine their discrimination capacity. It also performs a goodness-of-fit evaluation of any model parameter set. The user has the option of viewing plots like Scatter, 3D surfaces, and Bootstrap plots. In the Treatment Plan Assessment part, the software calculates the TCP and NTCP values of the involved tumors and OARs, respectively. Furthermore, it plots the dose-response curves of the TCPs, NTCPs, PB, PI, and P+ for a range of prescription doses for different treatment plans. The presented software is ideal for efficiently conducting studies of radiobiological modeling. Furthermore, it is ideal for performing treatment plan assessment, comparison, and optimization studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa