Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 311(3): 151496, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33756191

RESUMO

Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multi-organ failure, and puerperal sepsis and shows high mortality. Its primary cause is group A streptococcus (GAS, Streptococcus pyogenes). In this study, we genotyped the cell-surface M virulence protein gene (emm) from 621 GAS isolates obtained from patients with STSS in Japan in 2013-2018 and performed antimicrobial susceptibility testing using the broth microdilution method. The predominant emm type was found to be 1, followed by 89, 12, and 3, which were identified in more than 70 % of STSS isolates. The proportions of emm3 and emm89 increased from 2.4 % and 12.0 %, respectively, during 2010-2012 to 5.6 % and 23.3 % during 2013-2018. In contrast, the proportion of emm1 decreased from 60.6 % to 39.3 % during the same two periods. Some emm types showed increasing proportions and were not isolated from patients with STSS in 2010-2012. Among these, an emm76 type increased in prevalence and was not included in the 30-valent M protein-based vaccine. Continual investigation of changes in the epidemiology of GAS which causes STSS can provide useful monitoring information such as future vaccination strategies and the emergence status of antimicrobial-resistant bacteria.


Assuntos
Choque Séptico , Infecções Estreptocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Farmacorresistência Bacteriana , Humanos , Japão , Choque Séptico/tratamento farmacológico , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/epidemiologia , Streptococcus pyogenes/genética
2.
BMC Microbiol ; 21(1): 215, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34273946

RESUMO

BACKGROUND: Legionellosis is caused by the inhalation of aerosolized water contaminated with Legionella bacteria. In this study, we investigated the prevalence of Legionella species in aerosols collected from outdoor sites near asphalt roads, bathrooms in public bath facilities, and other indoor sites, such as buildings and private homes, using amoebic co-culture, quantitative PCR, and 16S rRNA gene amplicon sequencing. RESULTS: Legionella species were not detected by amoebic co-culture. However, Legionella DNA was detected in 114/151 (75.5%) air samples collected near roads (geometric mean ± standard deviation: 1.80 ± 0.52 log10 copies/m3), which was comparable to the numbers collected from bathrooms [15/21 (71.4%), 1.82 ± 0.50] but higher than those collected from other indoor sites [11/30 (36.7%), 0.88 ± 0.56] (P < 0.05). The amount of Legionella DNA was correlated with the monthly total precipitation (r = 0.56, P < 0.01). It was also directly and inversely correlated with the daily total precipitation for seven days (r = 0.21, P = 0.01) and one day (r = - 0.29, P < 0.01) before the sampling day, respectively. 16S rRNA gene amplicon sequencing revealed that Legionella species were detected in 9/30 samples collected near roads (mean proportion of reads, 0.11%). At the species level, L. pneumophila was detected in 2/30 samples collected near roads (the proportion of reads, 0.09 and 0.11% of the total reads number in each positive sample). The three most abundant bacterial genera in the samples collected near roads were Sphingomonas, Streptococcus, and Methylobacterium (mean proportion of reads; 21.1%, 14.6%, and 1.6%, respectively). In addition, the bacterial diversity in outdoor environment was comparable to that in indoor environment which contains aerosol-generating features and higher than that in indoor environment without the features. CONCLUSIONS: DNA from Legionella species was widely present in aerosols collected from outdoor sites near asphalt roads, especially during the rainy season. Our findings suggest that there may be a risk of exposure to Legionella species not only in bathrooms but also in the areas surrounding asphalt roads. Therefore, the possibility of contracting legionellosis in daily life should be considered.


Assuntos
Aerossóis/análise , Microbiologia do Ar , DNA Bacteriano/análise , Hidrocarbonetos , Legionella/classificação , Legionella/genética , Microbiota/genética , Chuva , Monitoramento Ambiental , Japão , RNA Ribossômico 16S/genética
3.
J Cell Physiol ; 235(10): 6725-6735, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32056205

RESUMO

The imbalance between food intake and energy expenditure causes high accumulation of triglycerides in adipocytes. Obesity is related with the increased lipid accumulation in white adipose tissue, which is a major risk factor for the development of metabolic disorders, such as type 2 diabetes and cardiovascular disease. This study highlights the role of E1A-like inhibitor of differentiation 1 (EID1) in the modulation of adipogenesis through the downregulation of glycerol-3-phosphate dehydrogenase (GPDH), which is a key enzyme in the synthesis of triglycerides and is considered to be a marker of adipogenesis. By analyzing DNA microarray data, we found that when EID1 is overexpressed in preadipocytes (3T3-L1 cells) during adipocyte differentiation, EID1 inhibits lipid accumulation through the downregulation of GPDH. In contrast, EID1 is not involved in the regulation of intracellular glucose via the translocation of glucose transporter. A confocal image analysis showed that EID1 is located in the nucleus of preadipocytes in the form of speckles, which could be involved as a regulator of the transcriptional process. We further confirmed that EID1 is able to bind to the promoter sequence of GPDH in the nucleus. These findings provide a molecular explanation for the inhibitory effect of EID1 on lipid accumulation in adipocytes.


Assuntos
Glicerolfosfato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo/fisiologia , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Camundongos , Obesidade/metabolismo , Regiões Promotoras Genéticas/genética , Triglicerídeos/metabolismo
4.
J Infect Chemother ; 26(2): 157-161, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31735631

RESUMO

Streptococcus pyogenes (group A streptococcus; GAS) is an important gram-positive human pathogen capable of causing diseases ranging from mild superficial skin and pharyngeal infections to more severe invasive diseases, including streptococcal toxic shock syndrome (STSS). GAS produces a T protein, and T serotyping has considerable discriminatory power for epidemiological characterization of GAS. To clarify the relationship between STSS and pharyngitis in Japan, we examined the T serotypes of GAS strains isolated from clinical specimens of streptococcal infections (STSS, 951 isolates; pharyngitis, 16268 isolates) from 2005 to 2017. The most prevalent T serotype from pharyngitis isolates was T12, followed by T1, T4, and TB3264. The most prevalent T serotype from STSS isolates was T1, followed by TB3264. Trend of increase and decrease in the frequency of T1 or TB3264 isolation from pharyngitis was correlated with that of STSS patients. The increase of T1 or TB3264 strain-infection in pharyngitis patients may increase the probability of causing STSS, indicating that careful monitoring of GAS serotypes is essential for the prediction of rapid increase of STSS in time to develop effective management strategies.


Assuntos
Faringite/microbiologia , Choque Séptico/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/classificação , Streptococcus pyogenes/isolamento & purificação , Humanos , Japão , Faringite/epidemiologia , Sorotipagem , Choque Séptico/epidemiologia , Infecções Estreptocócicas/epidemiologia
5.
Proc Natl Acad Sci U S A ; 114(49): 13042-13047, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158391

RESUMO

Although maternal nurturing behavior is extremely important for the preservation of a species, our knowledge of the biological underpinnings of these behaviors is insufficient. Here we show that the degree of a mother's nurturing behavior is regulated by factors present during her own fetal development. We found that Cin85-deficient (Cin85-/-) mother mice had reduced pituitary hormone prolactin (PRL) secretion as a result of excessive dopamine signaling in the brain. Their offspring matured normally and produced their own pups; however, nurturing behaviors such as pup retrieval and nursing were strongly inhibited. Surprisingly, when WT embryos were transplanted into the fallopian tubes of Cin85-/- mice, they also exhibited inhibited nurturing behavior as adults. Conversely, when Cin85-/- embryos were transplanted into the fallopian tubes of WT mice, the resultant pups exhibited normal nurturing behaviors as adults. When PRL was administered to Cin85-/- mice during late pregnancy, a higher proportion of the resultant pups exhibited nurturing behaviors as adults. This correlates with our findings that neural circuitry associated with nurturing behaviors was less active in pups born to Cin85-/- mothers, but PRL administration to mothers restored neural activity to normal levels. These results suggest that the prenatal period is extremely important in determining the expression of nurturing behaviors in the subsequent generation, and that maternal PRL is one of the critical factors for expression. In conclusion, perinatally secreted maternal PRL affects the expression of nurturing behaviors not only in a mother, but also in her pups when they have reached adulthood.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Comportamento Materno , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Prolactina/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Comportamento Animal , Encéfalo/fisiopatologia , Transferência Embrionária , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Mães , Proteínas de Neoplasias/deficiência , Proteínas do Tecido Nervoso/deficiência , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Prolactina/metabolismo , Maturidade Sexual/fisiologia , Transdução de Sinais
6.
Mol Cell Biochem ; 458(1-2): 79-87, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30993497

RESUMO

Although exercise affects the function and structure of skeletal muscle, our knowledge regarding the biomedical alterations induced by different intensities of exercise is incomplete. Here we report on the changes in biomarker levels and myofiber constitution in the rat soleus muscle induced by exercise intensity. Male adult rats at 7 weeks of age were divided into 3 groups by exercise intensity, which was set based on the accumulated lactate levels in the blood using a treadmill: stationary control (0 m/min), aerobic exercise (15 m/min), and anaerobic exercise (25 m/min). The rats underwent 30 min/day treadmill training at different exercise intensities for 14 days. Immediately after the last training session, the soleus muscle was dissected out in order to measure the muscle biomarker levels and evaluate the changes in the myofibers. The mRNA expression of citrate synthase, glucose-6-phosphate dehydrogenase, and Myo D increased with aerobic exercise, while the mRNA expression of myosin heavy-chain I and Myo D increased in anaerobic exercise. These results suggest that muscle biomarkers can be used as parameters for the muscle adaptation process in aerobic/anaerobic exercise. Interestingly, by 14 days after the anaerobic exercise, the number of type II (fast-twitch) myofibers had decreased by about 20%. Furthermore, many macrophages and regenerated fibers were observed in addition to the injured fibers 14 days after the anaerobic exercise. Constitutional changes in myofibers due to damage incurred during anaerobic exercise are necessary for at least about 2 weeks. These results indicate that the changes in the biomarker levels and myofiber constitution by exercise intensity are extremely important for understanding the metabolic adaptations of skeletal muscle during physical exercise.


Assuntos
Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Musculares/metabolismo , Condicionamento Físico Animal , Animais , Biomarcadores/metabolismo , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
7.
J Bacteriol ; 198(3): 410-5, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26527646

RESUMO

UNLABELLED: The flagellar hook is a short tubular structure located between the external filament and the membrane-bound basal body. The average hook length is 55 nm and is determined by the soluble protein FliK and the integral membrane protein FlhB. Hook elongation is terminated by FliK-mediated cessation of hook protein secretion, followed by the secretion of filamentous proteins. This process is referred to as the substrate specificity switch. Switching of the secretion modes results from a direct interaction between the FliK C-terminal domain (FliKC) and the secretion gate in FlhB. FliKC consists of two α-helices and four ß-strands. Loop 2 connects the first two ß-sheets and contains a conserved sequence of 9 residues. Genetic and physiological analyses of various fliK partial deletion mutants pointed to loop 2 as essential for induction of a conformational change in the FlhB gate. We constructed single-amino-acid substitutions in the conserved region of loop 2 of FliK and discovered that the loop sequence LRL is essential for the timely switching of secretion modes. IMPORTANCE: Flagellar protein secretion is controlled by the soluble protein FliK. We discovered that the loop 2 sequence LRL in the FliK C terminus was essential for timely switching of secretion modes. This mechanism is applicable to type three secretions systems that secrete virulence factors in bacterial pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Salmonella typhimurium/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Flagelina/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/genética , Especificidade por Substrato
8.
J Bacteriol ; 198(16): 2219-27, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27274031

RESUMO

UNLABELLED: Actinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of the fliQ gene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption, fliQ, fliC, fliK, and lytA Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared from A. missouriensis grown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5' ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15-17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously. IMPORTANCE: The biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes in A. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs. We identified a large flagellar gene cluster and an orphan flagellar gene (fliQ). These findings indicate that the zoospore flagellar components are typical of Gram-positive bacteria. However, the transcriptional analysis revealed that all flagellar genes are transcribed simultaneously during sporangium formation, a pattern differing from the orderly, regulated expression of flagellar genes in other bacteria, such as Salmonella and Escherichia coli These results suggest a novel regulatory mechanism for flagellar formation in A. missouriensis.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Micromonosporaceae/genética , Micromonosporaceae/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Flagelos/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo
9.
Antonie Van Leeuwenhoek ; 109(1): 131-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26590834

RESUMO

In Methanococcus maripaludis, the three archaellins which comprise the archaellum are modified at multiple sites with an N-linked tetrasaccharide with the structure of Sug-4-ß-ManNAc3NAmA6Thr-4-ß-GlcNAc3NAcA-3-ß-GalNAc, where Sug is a unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-L-erythro-hexos-5-ulo-1,5-pyranose, so far found exclusively in this species. In this study, a six-gene cluster mmp1089-1094, neighboring one of the genomic regions already known to contain genes involved with the archaellin N-glycosylation pathway, was examined for its potential involvement in the archaellin N-glycosylation or sugar biosynthesis pathway. The co-transcription of these six genes was demonstrated by RT-PCR. Mutants carrying an in-frame deletion in mmp1090, mmp1091 or mmp1092 were successfully generated. The Δmmp1090 deletion mutant was archaellated when examined by electron microscopy and mass spectrometry analysis of purified archaella showed that the archaellins were modified with a truncated N-glycan in which the terminal sugar residue and the threonine linked to the third sugar residue were missing. Both gene annotation and bioinformatic analyses indicate that MMP1090 is a UDP-glucose 4-epimerase, suggesting that the unique terminal sugar of the archaellin N-glycan might be synthesised from UDP-glucose or UDP-N-acetylglucosamine with an essential early step in synthesis catalysed by MMP1090. In contrast, no detectable phenotype related to archaellin glycosylation was observed in mutants deleted for either mmp1091 or mmp1092 while attempts to delete mmp1089, mmp1093 and mmp1094 were unsuccessful. Based on its demonstrated involvement in the archaellin N-glycosylation pathway, we designated mmp1090 as aglW.


Assuntos
Mathanococcus/genética , Mathanococcus/metabolismo , Oligossacarídeos/biossíntese , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Vias Biossintéticas/genética , Sequência de Carboidratos , Análise Mutacional de DNA , Deleção de Genes , Regulação da Expressão Gênica em Archaea , Genes Arqueais , Glicosilação , Mathanococcus/enzimologia , Microscopia Eletrônica , Dados de Sequência Molecular , Família Multigênica , Oligossacarídeos/metabolismo , Polissacarídeos/biossíntese , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo
10.
J Bacteriol ; 197(17): 2859-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26124240

RESUMO

UNLABELLED: Rhodobacter sphaeroides is a free-living alphaproteobacterium that contains two clusters of functional flagellar genes in its genome: one acquired by horizontal gene transfer (fla1) and one that is endogenous (fla2). We have shown that the Fla2 system is normally quiescent and under certain conditions produces polar flagella, while the Fla1 system is always active and produces a single flagellum at a nonpolar position. In this work we purified and characterized the structure and analyzed the composition of the Fla2 flagellum. The number of polar filaments per cell is 4.6 on average. By comparison with the Fla1 flagellum, the prominent features of the ultra structure of the Fla2 HBB are the absence of an H ring, thick and long hooks, and a smoother zone at the hook-filament junction. The Fla2 helical filaments have a pitch of 2.64 µm and a diameter of 1.4 µm, which are smaller than those of the Fla1 filaments. Fla2 filaments undergo polymorphic transitions in vitro and showed two polymorphs: curly (right-handed) and coiled. However, in vivo in free-swimming cells, we observed only a bundle of filaments, which should probably be left-handed. Together, our results indicate that Fla2 cell produces multiple right-handed polar flagella, which are not conventional but exceptional. IMPORTANCE: R. sphaeroides possesses two functional sets of flagellar genes. The fla1 genes are normally expressed in the laboratory and were acquired by horizontal transfer. The fla2 genes are endogenous and are expressed in a Fla1(-) mutant grown phototrophically and in the absence of organic acids. The Fla1 system produces a single lateral or subpolar flagellum, and the Fla2 system produces multiple polar flagella. The two kinds of flagella are never expressed simultaneously, and both are used for swimming in liquid media. The two sets of genes are certainly ready for responding to specific environmental conditions. The characterization of the Fla2 system will help us to understand its role in the physiology of this microorganism.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/ultraestrutura , Flagelina/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Rhodobacter sphaeroides/ultraestrutura , Proteínas de Bactérias/genética , Flagelina/metabolismo , Polimorfismo Genético , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
11.
J Bacteriol ; 197(9): 1668-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733616

RESUMO

UNLABELLED: Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-ß-ManNAc3NAmA6Thr-1,4-ß-GlcNAc3NAcA-1,3-ß-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE: This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway.


Assuntos
Proteínas de Fímbrias/metabolismo , Glicoproteínas/metabolismo , Mathanococcus/metabolismo , Oligossacarídeos/biossíntese , Pseudomonas aeruginosa/metabolismo , Vias Biossintéticas/genética , Western Blotting , Análise Mutacional de DNA , Deleção de Genes , Teste de Complementação Genética , Glicosilação , Espectrometria de Massas , Mathanococcus/genética , Pseudomonas aeruginosa/genética
12.
Am J Obstet Gynecol ; 213(5): 708.e1-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26196453

RESUMO

OBJECTIVE: Intrauterine infection such as by Escherichia coli and Ureaplasma spp induce placental inflammation and are one of the leading causes of preterm birth. Here we evaluated hydroxylated fullerene (C60[OH]44) for its in vitro antiinflammatory and antioxidant effects against host cellular responses to the ureaplasma toll-like receptor 2 (TLR2) ligand, UPM-1. In addition, we investigated the preventative effects of C60(OH)44 in vivo in a mouse preterm birth model that used UPM-1. STUDY DESIGN: TLR2-overexpressing cell lines and the primary cultures of mouse peritoneal macrophages were pretreated with C60(OH)44. After UPM-1 addition to the cell lines, the activation of the nuclear factor kappa-light chain-enhancer of activated B cells (NF-kappaB) signaling cascade and the production of reactive oxygen species were monitored. The levels of expression of inflammatory cytokines of interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α, and the production of reactive oxygen species were quantified after stimulation with UPM-1. The in vivo preventative effects of C60(OH)44 on mice preterm birth were evaluated by analyzing the preterm birth rates and fetal survival rates in the preterm birth mouse model with placental histological analyses. RESULTS: Pretreatment with C60(OH)44 significantly suppressed UPM-1-induced NF-kappaB activation and reactive oxygen species production in TLR2-overexpressing cell lines. In the primary culture of mouse peritoneal macrophages, UPM-1-induced production of reactive oxygen species and the expression of inflammatory cytokines such as IL-6, IL-1ß, and TNF-α were significantly reduced by pretreatment with C60(OH)44. In the UPM-1-induced preterm birth mouse model, the preterm birth rate decreased from 72.7% to 18.2% after an injection of C60(OH)44. Placental examinations of the group injected with C60(OH)44 reduced the damage of the spongiotrophoblast layer and reduced infiltration of neutrophils. CONCLUSION: C60(OH)44 was effective as a preventative agent of preterm birth in mice.


Assuntos
Fulerenos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Nascimento Prematuro/prevenção & controle , Receptor 2 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Fulerenos/química , Imuno-Histoquímica , Macrófagos Peritoneais/metabolismo , Camundongos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
J Bacteriol ; 196(9): 1753-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24563036

RESUMO

The length of the flagellar hook is controlled by the soluble protein FliK. FliK is structurally divided into two halves with distinct functions; the N-terminal half determines hook length, while the C-terminal half switches the secretion substrate specificity, consequently terminating hook elongation. FliK properly achieves both functions only when it is secreted. In a previous paper, we showed that a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium, SJW2219, produced basal bodies with short hooks (average length, 25 nm) at 37°C. In this study, we show that the mutant cells grown at 37°C secrete FliK but not flagellin (FliC), indicating that FliK is abortively secreted into the medium when the hook is shorter than 30 nm. In contrast, FliK unfailingly switches the gate modes when the hook is longer than 30 nm. Taking the FliC, FliK, and FlgM secretion patterns into account, we conclude that FliK determines the minimal length of the hook. We will discuss how FliK detects the critical switching point of the secretion gate.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/química , Salmonella typhimurium/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/química , Salmonella typhimurium/genética
14.
PLoS Pathog ; 8(2): e1002524, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346754

RESUMO

Bdellovibrio are predatory bacteria that have evolved to invade virtually all gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound ß-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that "regular" PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication.


Assuntos
Bdellovibrio/enzimologia , Escherichia coli/ultraestrutura , Aptidão Genética/genética , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio/genética , Bdellovibrio/crescimento & desenvolvimento , Bdellovibrio/patogenicidade , Domínio Catalítico , Cristalização , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Mutação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/isolamento & purificação , Periplasma/microbiologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Tempo
15.
PLoS Pathog ; 8(2): e1002493, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319440

RESUMO

Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways.


Assuntos
Bdellovibrio/genética , Bdellovibrio/patogenicidade , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bdellovibrio/crescimento & desenvolvimento , Bdellovibrio/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/metabolismo , Transdução de Sinais
16.
Arch Microbiol ; 196(3): 179-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24493292

RESUMO

Methanococcus maripaludis is a stringently anaerobic archaeon with two studied surface structures, archaella and type IV pili. Previously, it was shown that three pilin genes (mmp0233 [epdA], mmp0236 [epdB] and mmp0237 [epdC]) located within an 11 gene cluster in the genome were necessary for normal piliation. This study focused on analysis of the remaining genes to determine their potential involvement in piliation. Reverse transcriptase PCR experiments demonstrated the 11 genes formed a single transcriptional unit. Deletions were made in all the non-pilin genes except mmp0231. Electron microscopy revealed that all the genes in the locus except mmp0235 and mmp0238 were essential for piliation. Complementation with a plasmid-borne wild-type copy of the deleted gene restored at least some piliation. We identified genes for an assembly ATPase and two versions of the conserved pilin platform forming protein necessary for pili assembly at a separate genetic locus.


Assuntos
Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Mathanococcus/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Membrana Celular/genética , Sequência Conservada/genética , Deleção de Genes , Teste de Complementação Genética , Mathanococcus/enzimologia , Mathanococcus/ultraestrutura , Óperon/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Bacteriol ; 195(16): 3590-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23749974

RESUMO

The flagellar hook is a short, curved, extracellular structure located between the basal body and the filament. The hook is composed of the FlgE protein. In this study, we analyzed flagellum assembly in a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium. When the mutant cells were grown at 30°C, they produced flagella of a normal length (71% of the population) and short hooks without filaments (26%). At 37°C, 70% of the basal bodies lacked hooks, and intact flagella made up only 6% of the population. Mutant cells secreted monomeric FlgE in abundance at 37°C, suggesting that the mutant FlgE protein might be defective in polymerization at higher temperatures. The average length of the hooks in intact filaments was 55 nm, whereas after acid treatment, it was 45 nm. SDS-PAGE analysis of the hook-basal body showed that HAP1 was missing in the mutant but not in the wild type. We concluded that hook length in the mutant is controlled in the same way as in the wild type, but the hook appeared short after acid treatment due to the lack of HAP1. We also learned that the true length of the hook is possibly 45 nm, not 55 nm, as has been believed.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Flagelos/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Conformação Proteica , Salmonella typhimurium/genética , Temperatura
18.
J Bacteriol ; 195(18): 4094-104, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836872

RESUMO

N-glycosylation is a protein posttranslational modification found in all three domains of life. Many surface proteins in Archaea, including S-layer proteins, pilins, and archaellins (archaeal flagellins) are known to contain N-linked glycans. In Methanococcus maripaludis, the archaellins are modified at multiple sites with an N-linked tetrasaccharide with the structure Sug-1,4-ß-ManNAc3NAmA6Thr-1,4-ß-GlcNAc3NAcA-1,3-ß-GalNAc, where Sug is the unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-erythro-hexos-5-ulo-1,5-pyranose. In this study, four genes--mmp1084, mmp1085, mmp1086, and mmp1087--were targeted to determine their potential involvement of the biosynthesis of the sugar components in the N-glycan, based on bioinformatics analysis and proximity to a number of genes which have been previously demonstrated to be involved in the N-glycosylation pathway. The genes mmp1084 to mmp1087 were shown to be cotranscribed, and in-frame deletions of each gene as well as a Δmmp1086Δmmp1087 double mutant were successfully generated. All mutants were archaellated and motile. Mass spectrometry examination of purified archaella revealed that in Δmmp1084 mutant cells, the threonine linked to the third sugar of the glycan was missing, indicating a putative threonine transferase function of MMP1084. Similar analysis of the archaella of the Δmmp1085 mutant cells demonstrated that the glycan lacked the methyl group at the C-5 position of the terminal sugar, indicating that MMP1085 is a methyltransferase involved in the biosynthesis of this unique sugar. Deletion of the remaining two genes, mmp1086 and mmp1087, either singularly or together, had no effect on the structure of the archaellin N-glycan. Because of their demonstrated involvement in the N-glycosylation pathway, we designated mmp1084 as aglU and mmp1085 as aglV.


Assuntos
Proteínas de Membrana/genética , Mathanococcus/genética , Metiltransferases/genética , Polissacarídeos/biossíntese , Treonina/metabolismo , Transferases/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Carboidratos , Biologia Computacional , Deleção de Genes , Genes Arqueais , Glicosilação , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Mathanococcus/enzimologia , Mathanococcus/crescimento & desenvolvimento , Mathanococcus/metabolismo , Metiltransferases/metabolismo , Família Multigênica , Polissacarídeos/química , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transferases/metabolismo
19.
J Bacteriol ; 194(10): 2693-702, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22408155

RESUMO

N-linked glycosylation of protein is a posttranslational modification found in all three domains of life. The flagellin proteins of the archaeon Methanococcus maripaludis are known to be modified with an N-linked tetrasaccharide consisting of N-acetylgalactosamine (GalNAc), a diacetylated glucuronic acid (GlcNAc3NAc), an acetylated and acetamidino-modified mannuronic acid with a substituted threonine group (ManNAc3NAmA6Thr), and a novel terminal sugar residue [(5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose]. To identify genes involved in biosynthesis of the component sugars of this glycan, three genes, mmp1081, mmp1082, and mmp1083, were targeted for in-frame deletion, based on their annotation and proximity to glycosyltransferase genes known to be involved in assembly of the glycan. Mutants carrying a deletion in any of these three genes remained flagellated and motile. A strain with a deletion of mmp1081 had lower-molecular-mass flagellins in Western blots. Mass spectrometry of purified flagella revealed a truncated glycan with the terminal sugar absent and the threonine residue and the acetamidino group missing from the third sugar. No glycan modification was seen in either the Δmmp1082 or Δmmp1083 mutant grown in complex Balch III medium. However, a glycan identical to the Δmmp1081 glycan was observed when the Δmmp1082 or Δmmp1083 mutant was grown under ammonia-limited conditions. We hypothesize that MMP1082 generates ammonia and tunnels it through MMP1083 to MMP1081, which acts as the amidotransferase, modifying the third sugar residue of the M. maripaludis glycan with the acetamidino group.


Assuntos
Flagelina/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Mathanococcus/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Western Blotting , Configuração de Carboidratos , Deleção de Genes , Mathanococcus/genética , Mutação , Polissacarídeos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Dev Growth Differ ; 54(5): 588-604, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22694322

RESUMO

Roberts syndrome and SC phocomelia (RBS/SC) are genetic autosomal recessive syndromes caused by establishment of cohesion 1 homolog 2 ( ESCO 2) mutation. RBS/SC appear to have a variety of clinical features, even with the same mutation of the ESCO2 gene. Here, we established and genetically characterized a medaka model of RBS/SC by reverse genetics. The RBS/SC model was screened from a mutant medaka library produced by the Targeting Induced Local Lesions in Genomes method. The medaka mutant carrying the homozygous mutation at R80S in the conserved region of ESCO2 exhibited clinical variety (i.e. developmental arrest with craniofacial and chromosomal abnormalities and embryonic lethality) as characterized in RBS/SC. Moreover, widespread apoptosis and downregulation of some gene expression, including notch1a, were detected in the R80S mutant. The R80S mutant is the animal model for RBS/SC and a valuable resource that provides the opportunity to extend knowledge of ESCO2. Downregulation of some gene expression in the R80S mutant is an important clue explaining non-correlation between genotype and phenotype in RBS/SC.


Assuntos
Acetiltransferases/genética , Anormalidades Craniofaciais/genética , Modelos Animais de Doenças , Ectromelia/genética , Hipertelorismo/genética , Oryzias , Acetiltransferases/metabolismo , Animais , Apoptose/genética , Clonagem Molecular , Anormalidades Craniofaciais/metabolismo , Ectromelia/metabolismo , Genótipo , Hipertelorismo/metabolismo , Oryzias/genética , Oryzias/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptor Notch1/biossíntese , Genética Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa