Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Adv ; 49: 107731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785376

RESUMO

Non-degradable plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are among the most generated plastic wastes in municipal and industrial waste streams. The mismanagement of abandoned plastics and toxic plastic additives have threatened marine and land fauna as well as human beings for several decades. The available thermal processes can degrade plastic at pilot- and commercial-scale. However, they are energy-intensive and can generate toxic gases. Degradation of plastic waste with the help of live microorganisms (biodegradation) is an eco- and environmentally friendly method for plastic degradation, although the slow processing time and low degradation rate still hinder its applications at pilot- and large-scale. In this review, the advantages and limitations of current plastic degradation methods, their technology readiness levels (TRL), biodegradation mechanisms and the associated challenges in biodegradation are assessed in detail. Based on this analysis, a path toward an efficient and greener way toward degradation of non-recyclable single-use PE, PP, PS and PET plastic is proposed.


Assuntos
Resíduos Industriais , Plásticos , Biodegradação Ambiental , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa