Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Heredity (Edinb) ; 124(1): 170-181, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31485029

RESUMO

Bird pollination can vary spatially in response to spatial fluctuations in flowering even within plant populations. In this study, we examined the hypothesis that the spatial variation in bird pollination may induce mitigating effects, which maintains or increases genetic diversity of pollen pools at local sites with low flowering densities. To test this hypothesis, we analyzed the landscape-level genetic effects within a population of Camellia japonica on the pollen pools accepted by individuals in two reproductive years by using genotypes at eight microsatellite loci of 1323 seeds from 19 seed parents. Regression analyses using the quadratic models of correlated paternity between pollen pools against spatial distances between the seed-parent pairs revealed not only local pollination but also some amount of long-distance pollen dispersal. The genetic diversity of pollen pools accepted by seed parents tended to be negatively related to the densities of flowering individuals near the seed parents during winter (when the effective pollination of C. japonica is mediated mostly by Zosterops japonica). We show that the low density of flowering individuals may induce the expansion of the foraging areas of Z. japonica and consequently increase the genetic diversity of pollen pools. This spatial variation in bird pollination may induce the mitigating effects on the C. japonica population. The comparisons between the two study years indicate that the overall pattern of bird pollination and the genetic effects described here, including the mitigating effects, may be stable over time.


Assuntos
Camellia/genética , Variação Genética , Genética Populacional , Passeriformes , Pólen/genética , Polinização , Animais , Genótipo , Repetições de Microssatélites , Árvores/genética
2.
Breed Sci ; 69(1): 19-29, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31086480

RESUMO

Cryptomeria japonica is a major forestry tree species in Japan. Male sterility of the species is caused by a recessive gene, which shows dysfunction of pollen development and results in no dispersed pollen. Because the pollen of C. japonica induces pollinosis, breeding of pollen-free C. japonica is desired. In this study, single nucleotide polymorphism (SNP) markers located at 1.78 and 0.58 cM to a male sterility locus (MS1) were identified from an analysis of RNA-Seq and RAD-Seq, respectively. SNPs closely linked to MS1 were first scanned by a method similar to MutMap, where a type of index was calculated to measure the strength of the linkage between a marker sequence and MS1. Linkage analysis of selected SNP markers confirmed a higher efficiency of the current method to construct a partial map around MS1. Allele-specific PCR primer pair for the most closely linked SNP with MS1 was developed as a codominant marker, and visualization of the PCR products on an agarose gel enabled rapid screening of male sterile C. japonica. The allele-specific primers developed in this study would be useful for establishing the selection of male sterile C. japonica.

3.
Plant Cell Physiol ; 59(6): 1276-1284, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566239

RESUMO

Todo-matsu (Abies sachalinensis) is one of the most important forestry species in Hokkaido, Japan and is distributed from near sea level to the alpine zone. Due to its wide spatial distribution, the species adapts to its environment, displaying phenotypes of ecological relevance. In order to identify candidate genes under natural selection, we collected the transcriptome from the female and male flower, leaf and inner bark. De novo assembly with 34.7 Gb of sequencing reads produced 158,542 transcripts from 69,618 loci, whose estimated coverage reached 95.6% of conserved eukaryotic genes. Homology searches against publicly available databases identified 134,190 (84.6%) transcripts with at least one hit. In total, 28,944 simple sequence repeats (SSRs) and 80,758 single nucleotide variants (SNVs) were detected from 23,570 (14.9%) and 25,366 (16.0%) transcripts, which were valuable for use in genetic analysis of the species. All the annotations were included in a relational database, TodoFirGene, which provides an interface for various queries and homology search, and can be accessed at http://plantomics.mind.meiji.ac.jp/todomatsu/. This database hosts not only the A. sachalinensis transcriptome but also links to the proteomes of 13 other species, allowing a comparative genomic study of plant species.


Assuntos
Abies/genética , Bases de Dados de Ácidos Nucleicos , Variação Genética/genética , Transcriptoma , Flores/genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Casca de Planta/genética , Folhas de Planta/genética , Análise de Sequência de RNA
4.
Ann Bot ; 121(2): 359-365, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29293888

RESUMO

Background and Aims: Extensive clonal (vegetative) reproduction in lianas is a common and important life history strategy for regeneration and colonization success. However, few studies have evaluated the contribution of clonal reproduction to stand-level distribution of lianas in their natural habitat using genetic tools. The objectives of the present study were to investigate (1) the contribution of clonal reproduction to the distribution of Wisteria floribunda, (2) the size of clonal patches and (3) how the distribution patterns of W. floribunda clones are affected by micro-topography. Methods: The contribution of clonal reproduction to the distribution of the deciduous liana species W. floribunda was evaluated using genetic analysis across a 6-ha plot of an old-growth temperate forest in Japan and preference in landform between clonal ramets and non-clonal ramets was assessed. Key Results: Of the 391 ramets sampled, clonal reproduction contributed to 71 and 62 % of the total abundance and basal area, respectively, or 57 and 31 % when the largest ramet within a genet was excluded. The large contribution of clonal reproduction to the density and basal area of W. floribunda was consistent with previous observational studies. The largest genet included a patch size of 0.47 ha and ranged over 180 m. Preferred landforms of clonal and non-clonal ramets were significantly different when evaluated by both abundance and basal area. Non-clonal ramets distributed more on lower part of the slope than other landforms in comparison with clonal ramets and trees, possibly reflecting the limitation of clonal growth by stolons. Conclusions: Using genetic analysis, the present study found evidence of a large contribution of clonal reproduction on the distribution of W. floribunda in its natural habitat. The results indicate that clonal reproduction plays an important role not only in the formation of populations but also in determining the distribution patterns of liana species.


Assuntos
Reprodução Assexuada , Wisteria/fisiologia , DNA de Plantas/genética , Florestas , Técnicas de Genotipagem , Reprodução Assexuada/genética , Wisteria/genética
5.
Am J Bot ; 104(10): 1546-1555, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885231

RESUMO

PREMISE OF THE STUDY: Hybrid zones are areas where gene flow between related species is currently occurring, so information on the compatibility between related species and their hybrids is essential for predicting the dynamics of such zones generated by introgressive hybridization. In this study, we quantified the compatibility among Magnolia stellata, M. salicifolia, and their hybrids in a hybrid zone using gene dispersal modeling. METHODS: After determining the genealogical classes of adult trees in the hybrid zone, the paternity of 574 open-pollinated seeds from 37 known maternal trees was analyzed with microsatellite markers. A neighborhood-based Bayesian gene dispersal model developed by us for estimating compatibility was then applied to the paternity data. KEY RESULTS: When M. stellata or M. salicifolia were mothers, interspecific mating to produce F1 hybrids yielded significant incompatibility, but backcrossing with F1 hybrids did not. Furthermore, when F1 hybrids became mothers, no significant incompatibility resulted from backcrossing to parental species or intra-F1 mating to produce F2 hybrids. The estimated proportion of F1 hybrids in the outcrossed seeds (1.7%) in the hybrid zone was much lower than that in the adult trees (14.0%). CONCLUSIONS: While it is difficult to obtain F1 hybrids, their low incompatibility makes it easy to produce advanced generation hybrids, once they have been successfully obtained. Although the production of F1 seeds is rare, heterosis and/or weak selection pressure in an empty niche between the parental species' niches may have contributed to the increased proportion of adult F1 hybrids in the hybrid zone.


Assuntos
Fluxo Gênico , Genética Populacional , Magnolia/genética , Teorema de Bayes , Quimera , Vigor Híbrido , Hibridização Genética , Magnolia/fisiologia , Repetições de Microssatélites/genética , Modelos Genéticos , Modelos Estatísticos , Pólen/genética , Pólen/fisiologia , Reprodução , Sementes/genética , Sementes/fisiologia
6.
BMC Genomics ; 16: 112, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25765701

RESUMO

BACKGROUND: Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS: The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION: In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética , Transcriptoma/genética , Sequência de Bases , Mapeamento Cromossômico , Especiação Genética , Genoma de Planta , Quercus/genética , Quercus/crescimento & desenvolvimento , Análise de Sequência de RNA
7.
Tree Physiol ; 44(2)2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38145493

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease system is a versatile and essential biotechnological tool in the life sciences that allows efficient genome editing. When generating gene-edited trees, T0-generation plants are often used for subsequent analysis because of the time that is required to obtain the desired mutants via crossing. However, T0-generation plants exhibit various unexpected mutations, which emphasizes the need to identify mutants with expected mutation patterns. The two critical checkpoints in this process are to confirm the expected mutation patterns in both alleles and to exclude somatic chimeric plants. In this study, we generated gene-edited Cryptomeria japonica plants and established a method to determine chimerism and mutation patterns using fragment analysis and Oxford Nanopore Technologies (ONT)-based amplicon sequencing. In the first screening, fragment analysis, i.e., indel detection via amplicon analysis, was used to predict indel mutation patterns in both alleles and to discriminate somatic chimeric plants in 188 candidate mutants. In the second screening, we precisely determined the mutation patterns and chimerism in the mutants using ONT-based amplicon sequencing, where confirmation of both alleles can be achieved using allele-specific markers flanking the single guide RNA target site. In the present study, a bioinformatic analysis procedure was developed and provided for the rapid and accurate determination of DNA mutation patterns using ONT-based amplicon sequencing. As ONT amplicon sequencing has a low running cost compared with other long-read analysis methods, such as PacBio, it is a powerful tool in plant genetics and biotechnology to select gene-edited plants with expected indel patterns in the T0-generation.


Assuntos
Edição de Genes , Nanoporos , Edição de Genes/métodos , Sistemas CRISPR-Cas , Árvores/genética , RNA Guia de Sistemas CRISPR-Cas , Plantas
8.
BMC Genomics ; 14: 236, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575249

RESUMO

BACKGROUND: In temperate regions, the time lag between vegetative bud burst and bud set determines the duration of the growing season of trees (i.e. the duration of wood biomass production). Dormancy, the period during which the plant is not growing, allows trees to avoid cold injury resulting from exposure to low temperatures. An understanding of the molecular machinery controlling the shift between these two phenological states is of key importance in the context of climatic change. The objective of this study was to identify genes upregulated during endo- and ecodormancy, the two main stages of bud dormancy. Sessile oak is a widely distributed European white oak species. A forcing test on young trees was first carried out to identify the period most likely to correspond to these two stages. Total RNA was then extracted from apical buds displaying endo- and ecodormancy. This RNA was used for the generation of cDNA libraries, and in-depth transcriptome characterization was performed with 454 FLX pyrosequencing technology. RESULTS: Pyrosequencing produced a total of 495,915 reads. The data were cleaned, duplicated reads removed, and sequences were mapped onto the oak UniGene data. Digital gene expression analysis was performed, with both R statistics and the R-Bioconductor packages (edgeR and DESeq), on 6,471 contigs with read numbers ≥ 5 within any contigs. The number of sequences displaying significant differences in expression level (read abundance) between endo- and ecodormancy conditions ranged from 75 to 161, depending on the algorithm used. 13 genes displaying significant differences between conditions were selected for further analysis, and 11 of these genes, including those for glutathione-S-transferase (GST) and dehydrin xero2 (XERO2) were validated by quantitative PCR. CONCLUSIONS: The identification and functional annotation of differentially expressed genes involved in the "response to abscisic acid", "response to cold stress" and "response to oxidative stress" categories constitutes a major step towards characterization of the molecular network underlying vegetative bud dormancy, an important life history trait of long-lived organisms.


Assuntos
Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais/fisiologia , Quercus/genética , Quercus/fisiologia , Transcriptoma , Ácido Abscísico/fisiologia , Sequência de Bases , Temperatura Baixa , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes de Plantas , Giberelinas/genética , Globulinas/genética , Glicosiltransferases/genética , Quercus/crescimento & desenvolvimento , RNA de Plantas/genética , Análise de Sequência de RNA , Estresse Fisiológico/genética , Regulação para Cima
9.
Mol Ecol ; 22(8): 2264-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23432376

RESUMO

Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.


Assuntos
Dipterocarpaceae/genética , Evolução Molecular , Especiação Genética , Filogeografia , Bornéu , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Genética Populacional , Haplótipos , Indonésia , Malásia , Dados de Sequência Molecular , Análise de Sequência de DNA , Clima Tropical
10.
Environ Int ; 174: 107893, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058973

RESUMO

The impact of low-dose-rate radiation on genetics is largely unknown, particularly in natural environments. The Fukushima Dai-ich Nuclear Power Plant disaster resulted in the creation of contaminated natural lands. In this study, de novo mutations (DNMs) in germ line cells were surveyed from double-digest RADseq fragments in Japanese cedar and flowering cherry trees exposed to ambient dose rates ranging from 0.08 to 6.86 µGy h-1. These two species are among the most widely cultivated Japanese gymnosperm and angiosperm trees for forestry and horticultural purpose, respectively. For Japanese flowering cherry, open crossings were performed to produce seedlings, and only two candidate DNMs were detected from uncontaminated area. For Japanese cedar, the haploid megagametophytes were used as next generation samples. The use of megagametophytes from open crossing for next generation mutation screening had many advantages such as reducing exposure to radiation in contaminated areas because artificial crossings are not needed and the ease of data analysis owing to the haploid nature of megagametophytes. A direct comparison of the nucleotide sequences of parents and megagametophytes revealed an average of 1.4 candidate DNMs per megagametophyte sample (range: 0-40) after filtering procedures were optimized based on the validation of DNMs via Sanger sequencing. There was no relationship between the observed mutations and the ambient dose rate in the growing area or the concentration of 137Cs in cedar branches. The present results also suggest that mutation rates differ among lineages and that the growing environment has a relatively large influence on these mutation rates. These results suggested there was no significant increase in the mutation rate of the germplasm of Japanese cedar and flowering cherry trees growing in the contaminated areas.


Assuntos
Desastres , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Árvores/genética , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/análise , Japão
11.
Mol Ecol Resour ; 23(4): 855-871, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36694075

RESUMO

DNA barcode databases are increasingly available for a range of organisms, facilitating the wide application of DNA barcode-based studies. Here we announce the development of a comprehensive DNA barcode reference library of Japanese native woody seed plants representing 43 orders, 99 families, 303 genera and 834 species, and comprising 77.3% of the genera and 72.2% of the species of native woody seed plants in Japan. A total of 6216 plant specimens were collected from 223 sites across the subtropical, temperate, boreal and alpine biomes in Japan with most species represented by multiple accessions. This reference library utilized three chloroplast DNA regions (rbcL, trnH-psbA and matK) and consists of 14,403 barcode sequences. Individual regions varied in their identification rates, with species-level and genus-level rates for rbcL, trnH-psbA and matK based on blast being 57.4%/96.2%, 78.5%/99.1% and 67.8%/98.1%, respectively. Identification rates were higher using region combinations, with total species-level rates for two region combinations (rbcL & trnH-psbA, rbcL & matK and trnH-psbA & matK) ranging between 90.6% and 95.8%, and for all three regions being equal to 98.6%. Genus-level identification rates were even higher, ranging between 99.7% and 100% for two region combinations and being 100% for the three regions. These results indicate that this DNA barcode reference library is an effective resource for investigations of native woody seed plants in Japan using DNA barcodes and provides a useful template for the development of libraries for other components of the Japanese flora.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Humanos , Código de Barras de DNA Taxonômico/métodos , Japão , Análise de Sequência de DNA , Sementes/genética , DNA de Plantas/genética , Filogenia
12.
PNAS Nexus ; 2(8): pgad236, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37559748

RESUMO

Pollinosis, also known as pollen allergy or hay fever, is a global problem caused by pollen produced by various plant species. The wind-pollinated Japanese cedar (Cryptomeria japonica) is the largest contributor to severe pollinosis in Japan, where increasing proportions of people have been affected in recent decades. The MALE STERILITY 4 (MS4) locus of Japanese cedar controls pollen production, and its homozygous mutants (ms4/ms4) show abnormal pollen development after the tetrad stage and produce no mature pollen. In this study, we narrowed down the MS4 locus by fine mapping in Japanese cedar and found TETRAKETIDE α-PYRONE REDUCTASE 1 (TKPR1) gene in this region. Transformation experiments using Arabidopsis thaliana showed that single-nucleotide substitution ("T" to "C" at 244-nt position) of CjTKPR1 determines pollen production. Broad conservation of TKPR1 beyond plant division could lead to the creation of pollen-free plants not only for Japanese cedar but also for broader plant species.

13.
BMC Genomics ; 13: 136, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22507374

RESUMO

BACKGROUND: Microsatellites or simple sequence repeats (SSRs) in expressed sequence tags (ESTs) are useful resources for genome analysis because of their abundance, functionality and polymorphism. The advent of commercial second generation sequencing machines has lead to new strategies for developing EST-SSR markers, necessitating the development of bioinformatic framework that can keep pace with the increasing quality and quantity of sequence data produced. We describe an open scheme for analyzing ESTs and developing EST-SSR markers from reads collected by Sanger sequencing and pyrosequencing of sugi (Cryptomeria japonica). RESULTS: We collected 141,097 sequence reads by Sanger sequencing and 1,333,444 by pyrosequencing. After trimming contaminant and low quality sequences, 118,319 Sanger and 1,201,150 pyrosequencing reads were passed to the MIRA assembler, generating 81,284 contigs that were analysed for SSRs. 4,059 SSRs were found in 3,694 (4.54%) contigs, giving an SSR frequency lower than that in seven other plant species with gene indices (5.4-21.9%). The average GC content of the SSR-containing contigs was 41.55%, compared to 40.23% for all contigs. Tri-SSRs were the most common SSRs; the most common motif was AT, which was found in 655 (46.3%) di-SSRs, followed by the AAG motif, found in 342 (25.9%) tri-SSRs. Most (72.8%) tri-SSRs were in coding regions, but 55.6% of the di-SSRs were in non-coding regions; the AT motif was most abundant in 3' untranslated regions. Gene ontology (GO) annotations showed that six GO terms were significantly overrepresented within SSR-containing contigs. Forty-four EST-SSR markers were developed from 192 primer pairs using two pipelines: read2Marker and the newly-developed CMiB, which combines several open tools. Markers resulting from both pipelines showed no differences in PCR success rate and polymorphisms, but PCR success and polymorphism were significantly affected by the expected PCR product size and number of SSR repeats, respectively. EST-SSR markers exhibited less polymorphism than genomic SSRs. CONCLUSIONS: We have created a new open pipeline for developing EST-SSR markers and applied it in a comprehensive analysis of EST-SSRs and EST-SSR markers in C. japonica. The results will be useful in genomic analyses of conifers and other non-model species.


Assuntos
Cryptomeria/genética , Etiquetas de Sequências Expressas/metabolismo , Repetições de Microssatélites/genética , Análise de Sequência de DNA/métodos , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Composição de Bases/genética , Biologia Computacional , Biblioteca Gênica , Genes de Plantas/genética , Marcadores Genéticos , Tamanho do Genoma/genética , Modelos Lineares , Anotação de Sequência Molecular , Motivos de Nucleotídeos/genética , Reação em Cadeia da Polimerase , Polimorfismo Genético
14.
BMC Genomics ; 13: 95, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22424262

RESUMO

BACKGROUND: High-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems. RESULTS: We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf) that is closely linked to the ms1 gene, being separated from it by only 0.5 cM. CONCLUSIONS: Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity.


Assuntos
Mapeamento Cromossômico , Cryptomeria/genética , Genes Recessivos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Fertilidade/genética , Ligação Genética , Genótipo , Locos de Características Quantitativas
15.
Sci Adv ; 8(10): eabm7891, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275731

RESUMO

In the future with climate change, we expect more forest and tree damage due to the increasing strength and changing trajectories of tropical cyclones (TCs). However, to date, we have limited information to estimate likely damage levels, and nobody has ever measured exactly how forest trees behave mechanically during a TC. In 2018, a category-5 TC destroyed trees in our ongoing research plots, in which we were measuring tree movement and wind speed in two different tree spacing plots. We found damaged trees in only the wider spaced plot. Here, we present how trees dynamically respond to strong winds during a TC. Sustained strong winds obviously trigger the damage to trees and forests but inter-tree spacing is also a key factor because the level of support from neighboring trees modifies the effective "stiffness" against the wind both at the single tree and whole forest stand level.

16.
Sci Total Environ ; 838(Pt 3): 156224, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644386

RESUMO

Organisms living on Earth have always been exposed to natural sources of ionizing radiation, but following recent nuclear disasters, these background levels have often increased regionally due to the addition of man-made sources of radiation. To assess the mutational effects of ubiquitously present radiation on plants, we performed a whole-genome resequencing analysis of mutations induced by chronic irradiation throughout the life cycle of Arabidopsis thaliana grown under controlled conditions. We obtained resequencing data from 36 second generation post-mutagenesis (M2) progeny derived from 12 first generation (M1) lines grown under gamma-irradiation conditions, ranging from 0.0 to 2.0 Gray per day (Gy/day), to identify de novo mutations, including single base substitutions (SBSs) and small insertions/deletions (INDELs). The relationship between de novo mutation frequency and radiation dose rate from 0.0 to 2.0 Gy/day was assessed by statistical modeling. The increase in de novo mutations in response to irradiation dose fit the negative binomial model, which accounted for the high variability of mutation frequency observed. Among the different types of mutations, SBSs were more prevalent than INDELs, and deletions were more frequent than insertions. Furthermore, we observed that the mutational effects of chronic radiation were greater during the reproductive stage. These results will provide valuable insights into practical strategies for analyzing mutational effects in wild plants growing in environments with various mutagens.


Assuntos
Arabidopsis , Arabidopsis/genética , Raios gama , Estágios do Ciclo de Vida , Mutação , Tolerância a Radiação
17.
Front Plant Sci ; 13: 825340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211140

RESUMO

Sugi (Japanese cedar, Cryptomeria japonica) is the most important forestry tree species in Japan, covering 44% of the total artificial forest area. Large amounts of pollen released from these forests each spring cause allergic reactions in approximately 40% of the population, which are a serious social and public health problem in Japan. As a countermeasure, there is an urgent need to reforest using male-sterile plants (MSPs; pollen-free plants); however, the production of MSPs via conventional methods is inefficient, time consuming, and requires considerable resources in terms of labor and space. In the present paper, we described an improved and simplified methodology for the efficient propagation of pollen-free Japanese cedar, combining the use of genetic markers (marker-assisted selection or marker-aided selection) for the early selection of male-sterile genotypes and the use of somatic embryogenesis (SE) for the clonal mass propagation of seedlings. We describe all the stages involved in the production process of somatic seedlings. Our results demonstrated that this methodology easily and efficiently produces MSPs with a discrimination rate of 100% in a short period of time. Production of 243.6 ± 163.6 cotyledonary embryos per plate, somatic embryo germination, and plantlet conversion frequencies of 87.1 ± 11.9% and 84.8 ± 12.6%, respectively, and a 77.6 ± 12.1% survival rate after ex vitro acclimatization was achieved. Moreover, we also describe an easy method for the collection of somatic embryos prior to germination, as well as an efficient and practical method for their storage at 5°C. Finally, a representative schedule for the propagation of pollen-free sugi somatic seedlings is presented as a reference for practical uses. This methodology will definitively help to accelerate the production of C. japonica MSPs across Japan.

18.
PLoS One ; 17(7): e0270522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793335

RESUMO

The heartwood color of a major plantation tree Cryptomeria japonica shows high variability among clones and cultivars, and brighter heartwood has higher value in the usage of non-laminated wood such as in traditional construction, which makes heartwood color an important trait in breeding of this species. However, the genetic basis of the interactions between genetics and the environment on heartwood color has been understudied while these are necessary for effective breeding programs in multiple environmental condition. The objectives of the present study were to evaluate the effects of genetics and environments on heartwood color and how they interact in contrasting environments, and to identify genomic regions controlling heartwood color in C. japonica across multiple environments. Heartwood color in terms of L*a*b* color space and spectral reflectance was measured in common gardens established in three contrasting sites. Quantitative trait loci (QTL) that affect heartwood color were identified using previously constructed highly saturated linkage maps. Results found that heartwood color was largely genetically controlled, and genotype-by-environment interaction explained one-third of the total genetic variance of heartwood color. The effect of the environment was small compared to the effect of genetics, whereas environmental effects largely varied among heartwood color traits. QTL analysis identified a large number of QTLs with small to moderate effects (phenotypic variation explained of 6.6% on average). Some of these QTLs were stably expressed in multiple environments or had pleiotropic effects on heartwood color and moisture content. These results indicated that genetic variation in phenotypic plasticity plays an important role in regulating heartwood color and that the identified QTLs would maximize the breeding efficiency of heartwood color in C. japonica in heterogeneous environments.


Assuntos
Cryptomeria , Locos de Características Quantitativas , Cryptomeria/genética , Interação Gene-Ambiente , Genótipo , Melhoramento Vegetal
19.
Am Nat ; 177(5): 562-73, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21508604

RESUMO

In nature, spatiotemporally dynamic coevolutionary processes play major roles in the foundation and maintenance of biodiversity. Here, we examined the arms race coevolution involving a seed-eating weevil with a long snout and its camellia plant host with a thick fruit coat (pericarp) throughout the marked climatic gradient observed across the Japanese islands. Results demonstrated that female weevils, which bored holes through camellia pericarps to lay eggs into seeds, had evolved much longer snouts than males, especially in areas in which Japanese camellia pericarps were very thick. The thickness of the plant pericarp was heritable, and the camellia plant evolved a significantly thicker pericarp on islands with the weevil than on islands without it. Across populations with weevils, resource allocation to plant defense increased with increasing annual mean temperature or annual precipitation, thereby geographically differentiating the evolutionary and ecological interactions between the two species. Given that the coevolutionary relationship exhibited appreciable variation across a relatively small range of annual mean temperatures, ongoing global climatic change can dramatically alter the coevolutionary process, thereby changing the ecological interaction between these species.


Assuntos
Evolução Biológica , Camellia/parasitologia , Clima , Interações Hospedeiro-Parasita , Gorgulhos/fisiologia , Animais , Camellia/genética , Mudança Climática , Feminino , Frutas/anatomia & histologia , Frutas/parasitologia , Frutas/fisiologia , Masculino , Oviposição , Característica Quantitativa Herdável , Gorgulhos/anatomia & histologia
20.
Ann Bot ; 108(1): 133-42, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21693668

RESUMO

BACKGROUND AND AIMS: Primula sieboldii is a perennial clonal herb that is distributed around the Sea of Japan and is endangered in Japan. Its breeding system is characterized by heteromorphic self-incompatibility, and the morph ratio within a population is very important for reproductive success. The aims of this study were to construct a linkage map, map the S locus as a qualitative trait and quantitative trait loci (QTLs) for floral morphological traits related to heterostyly, and predict the morph type in wild populations by using molecular markers for devising a conservation strategy. METHODS: A linkage map was constructed with 126 markers. The QTLs for four floral traits and the S locus were mapped. Using the genotypes of loci that were located near both the S locus and the QTLs with large effects, morphs of 59 wild genets were predicted. KEY RESULTS: The linkage map consisted of 14 linkage groups (LGs). The S locus was mapped to LG 7. Major QTLs for stigma and anther heights were detected in the same region as the S locus. These QTLs exhibited high logarithm of the odds scores and explained a high percentage of the phenotypic variance (>85 %). By analysing these two traits within each morph, additional QTLs for each trait were detected. Using the four loci linked to the S locus, the morphs of 43 genets in three wild populations could be predicted. CONCLUSIONS: This is the first report of a linkage map and QTL analysis for floral morphology related to heterostyly in P. sieboldii. Floral morphologies related to heterostyly are controlled by the S locus in LG 7 and by several QTLs in other LGs. Additionally, this study showed that molecular markers are effective tools for investigating morph ratios in a population containing the non-flowering individuals or during the non-flowering seasons.


Assuntos
Mapeamento Cromossômico/classificação , Flores/classificação , Marcadores Genéticos/genética , Primula/classificação , Locos de Características Quantitativas/genética , Cruzamento , Cruzamentos Genéticos , DNA de Plantas/genética , Fertilidade , Flores/anatomia & histologia , Flores/genética , Loci Gênicos/genética , Genética Populacional , Genótipo , Japão , Modelos Biológicos , Fenótipo , Polimorfismo Genético , Primula/anatomia & histologia , Primula/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa