Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Synapse ; 71(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28509375

RESUMO

Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalinas/metabolismo , Nicotina/toxicidade , Precursores de Proteínas/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Análise de Variância , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
2.
Synapse ; 70(7): 283-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990424

RESUMO

Cocaine-and-Amphetamine Regulated Transcript (CART) mRNA and peptides are intensely expressed in the brain regions comprising mesocorticolimbic system. Studies suggest that CART peptides may have a role in the regulation of reward circuitry. The present study aimed to examine the effect of nicotine on CART expression in the mesocorticolimbic system. Three different doses of nicotine (0.2, 0.4, 0.6 mg/kg free base) were injected subcutaneously for 5 days, and on day 6, rats were decapitated following a challenge dose. CART mRNA and peptide levels in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (DST), amygdala (AMG), lateral hypothalamic area (LHA), and ventral tegmental area (VTA) were measured by quantitative real-time PCR (qPCR) and Western Blot analysis, respectively. In the mPFC, 0.4 and 0.6 mg/kg nicotine, decreased CART peptide levels whereas there was no effect on CART mRNA levels. In the VTA, a down-regulation of CART peptide expression was observed with 0.2 and 0.6 mg/kg nicotine. Conversely, 0.4 and 0.6 mg/kg nicotine increased CART mRNA levels in the AMG without affecting the CART peptide expression. Nicotine did not regulate CART mRNA or CART peptide expression in the NAc, DST, and LHA. We conclude that nicotine regulates CART expression in the mesocorticolimbic system and this regulation may play an important role in nicotine reward. Synapse 70:283-292, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Sistema Límbico/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Sistema Límbico/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Physiol Behav ; 268: 114239, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196819

RESUMO

Physical exercise training has been positioned as a behavioral strategy to prevent or alleviate obesity via promotion of energy expenditure as well as modulation of energy intake resulting from changes in dietary preference. Brain adaptations underlying the latter process are incompletely understood. Voluntary wheel running (VWR) is a self-reinforcing rodent paradigm that mimics aspects of human physical exercise training. Behavioral and mechanistic insight from such fundamental studies can help optimize therapies that improve body weight and metabolic health based on physical exercise training in humans. To assess the effects of VWR on dietary self-selection, male Wistar rats were given access to a two-component "no-choice" control diet (CD; consisting of prefabricated nutritionally complete pellets and a bottle with tap water) or a four-component free-choice high-fat high-sucrose diet (fc-HFHSD; consisting of a container with prefabricated nutritionally complete pellets, a dish with beef tallow, a bottle with tap water, and a bottle with 30% sucrose solution). Metabolic parameters and baseline dietary self-selection behavior during sedentary (SED) housing were measured for 21 days, after which half of the animals were allowed to run on a vertical running wheel (VWR) for another 30 days. This resulted in four experimental groups (SEDCD, SEDfc-HFHSD, VWRCD, and VWRfc-HFHSD). Gene expression of opioid and dopamine neurotransmission components, which are associated with dietary self-selection, was assessed in the lateral hypothalamus (LH) and nucleus accumbens (NAc), two brain regions involved in reward-related behavior, following 51 and 30 days of diet consumption and VWR, respectively. Compared to CD controls, consumption of fc-HFHSD before and during VWR did not alter total running distances. VWR and fc-HFHSD had opposite effects on body weight gain and terminal fat mass. VWR transiently lowered caloric intake and increased and decreased terminal adrenal and thymus mass, respectively, independent of diet. VWR during fc-HFHSD consumption consistently increased CD self-selection, had an acute negative effect on fat self-selection, and a delayed negative effect on sucrose solution self-selection compared to SED controls. Gene expression of opioid and dopamine neurotransmission components in LH and NAc were unaltered by fc-HFHSD or VWR. We conclude that VWR modulates fc-HFHSD component self-selection in a time-dependent manner in male Wistar rats.


Assuntos
Analgésicos Opioides , Atividade Motora , Ratos , Animais , Bovinos , Masculino , Humanos , Ratos Wistar , Analgésicos Opioides/farmacologia , Dopamina/farmacologia , Dieta Hiperlipídica , Peso Corporal , Sacarose/farmacologia
4.
Brain Struct Funct ; 226(7): 2431-2458, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318365

RESUMO

The lateral hypothalamus is a major integrative hub with a complex architecture characterized by intricate and overlapping cellular populations expressing a large variety of neuro-mediators. In rats, the subfornical lateral hypothalamus (LHsf) was identified as a discrete area with very specific outputs, receiving a strong input from the nucleus incertus, and involved in defensive and foraging behaviors. We identified in the mouse lateral hypothalamus a discrete subfornical region where a conspicuous cluster of neurons express the mu opioid receptor. We thus examined the inputs and outputs of this LHsf region in mice using retrograde tracing with the cholera toxin B subunit and anterograde tracing with biotin dextran amine, respectively. We identified a connectivity profile largely similar, although not identical, to what has been described in rats. Indeed, the mouse LHsf has strong reciprocal connections with the lateral septum, the ventromedial hypothalamic nucleus and the dorsal pre-mammillary nucleus, in addition to a dense output to the lateral habenula. However, the light input from the nucleus incertus and the moderate bidirectional connectivity with nucleus accumbens are specific to the mouse LHsf. A preliminary neurochemical study showed that LHsf neurons expressing mu opioid receptors also co-express calcitonin gene-related peptide or somatostatin and that the reciprocal connection between the LHsf and the lateral septum may be functionally modulated by enkephalins acting on mu opioid receptors. These results suggest that the mouse LHsf may be hodologically and functionally comparable to its rat counterpart, but more atypical connections also suggest a role in consummatory behaviors.


Assuntos
Região Hipotalâmica Lateral , Animais , Habenula , Hipotálamo , Camundongos , Vias Neurais , Neurônios , Núcleos da Rafe , Receptores Opioides mu
5.
Neuropharmacology ; 152: 30-41, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858104

RESUMO

Opiate addiction develops as a chronic relapsing disorder upon drug recreational use or following misuse of analgesic prescription. Mu opioid (MOP) receptors are the primary molecular target of opiates but increasing evidence support in vivo functional heteromerization with the delta opioid (DOP) receptor, which may be part of the neurobiological processes underlying opiate addiction. Here, we used double knock-in mice co-expressing fluorescent versions of the MOP and DOP receptors to examine the impact of chronic morphine administration on the distribution of neurons co-expressing the two receptors. Our data show that MOP/DOP neuronal co-expression is broader in morphine-dependent mice and is detected in novel brain areas located in circuits related to drug reward, motor activity, visceral control and emotional processing underlying withdrawal. After four weeks of abstinence, MOP/DOP neuronal co-expression is still detectable in a large number of these brain areas except in the motor circuit. Importantly, chronic morphine administration increased the proportion of MOP/DOP neurons in the brainstem of morphine-dependent and abstinent mice. These findings establish persistent changes in the abstinent state that may modulate relapse and opiate-induced hyperalgesia and also point to the therapeutic potential of MOP/DOP targeting. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Assuntos
Morfina/efeitos adversos , Neurônios/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Síndrome de Abstinência a Substâncias , Analgésicos Opioides/efeitos adversos , Animais , Feminino , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Hiperalgesia/tratamento farmacológico , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dependência de Morfina/tratamento farmacológico , Receptor Cross-Talk
6.
J Neuroendocrinol ; 31(5): e12718, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30958590

RESUMO

Humans have engineered a dietary environment that has driven the global prevalence of obesity and several other chronic metabolic diseases to pandemic levels. To prevent or treat obesity and associated comorbidities, it is crucial that we understand how our dietary environment, especially in combination with a sedentary lifestyle and/or daily-life stress, can dysregulate energy balance and promote the development of an obese state. Substantial mechanistic insight into the maladaptive adaptations underlying caloric overconsumption and excessive weight gain has been gained by analysing brains from rodents that were eating prefabricated nutritionally-complete pellets of high-fat diet (HFD). Although long-term consumption of HFDs induces chronic metabolic diseases, including obesity, they do not model several important characteristics of the modern-day human diet. For example, prefabricated HFDs ignore the (effects of) caloric consumption from a fluid source, do not appear to model the complex interplay in humans between stress and preference for palatable foods, and, importantly, lack any aspect of choice. Therefore, our laboratory uses an obesogenic free-choice high-fat high-sucrose (fc-HFHS) diet paradigm that provides rodents with the opportunity to choose from several diet components, varying in palatability, fluidity, texture, form and nutritive content. Here, we review recent advances in our understanding how the fc-HFHS diet disrupts peripheral metabolic processes and produces adaptations in brain circuitries that govern homeostatic and hedonic components of energy balance. Current insight suggests that the fc-HFHS diet has good construct and face validity to model human diet-induced chronic metabolic diseases, including obesity, because it combines the effects of food palatability and energy density with the stimulating effects of variety and choice. We also highlight how behavioural, physiological and molecular adaptations might differ from those induced by prefabricated HFDs that lack an element of choice. Finally, the advantages and disadvantages of using the fc-HFHS diet for preclinical studies are discussed.


Assuntos
Dieta Hiperlipídica , Modelos Animais de Doenças , Ingestão de Energia , Doenças Metabólicas/fisiopatologia , Obesidade/fisiopatologia , Animais , Comportamento de Escolha , Açúcares da Dieta/administração & dosagem , Metabolismo Energético , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Estresse Psicológico
7.
Front Pharmacol ; 9: 1240, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483121

RESUMO

Mu opioid receptors modulate a large number of physiological functions. They are in particular involved in the control of pain perception and reward properties. They are also the primary molecular target of opioid drugs and mediate their beneficial analgesic effects, euphoric properties as well as negative side effects such as tolerance and physical dependence. Importantly, mu opioid receptors can physically associate with another receptor to form a novel entity called heteromer that exhibits specific ligand binding, signaling, and trafficking properties. As reviewed here, in vivo physical proximity has now been evidenced for several receptor pairs, subsequent impact of heteromerization on native mu opioid receptor signaling and trafficking identified and a link to behavioral changes established. Selective targeting of heteromers as a tool to modulate mu opioid receptor activity is therefore attracting growing interest and raises hopes for innovative therapeutic strategies.

8.
Neurosci Lett ; 637: 75-79, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27890744

RESUMO

Pro-opiomelanocortin (POMC)-derived peptides and their receptors have been shown to play important roles in natural and drug-induced reward and reinforcement. Reward process may involve the regulation of POMC gene expression and the gene expression of POMC-derived peptide receptors. The present study investigated the alterations observed in the transcript levels of POMC, melanocortin 3 (MC3R), melanocortin 4 (MC4R) and mu-opioid receptors (MOR) in the hypothalamus and mesocorticolimbic system during nicotine exposure. Rats were injected subcutaneously for 5days with one of the three doses (0.2, 0.4 or 0.6mg/kg/day, free base) of nicotine and were decapitated one hour after a challenge dose on the sixth day. mRNA levels of POMC in the hypothalamus, MC3R in the ventral tegmental area (VTA), MC4R and MOR in the medial prefrontal cortex (mPFC), nucleus accumbens, dorsal striatum, amygdala, lateral hypothalamic area and VTA were measured by quantitative real-time PCR. Our results showed that treatment with 0.6mg/kg/day nicotine upregulated POMC mRNA in the hypothalamus and MC4R mRNA in the mPFC. Additionally, all three nicotine doses increased MC3R mRNA expression in the VTA. On the other hand, none of the nicotine doses altered MOR mRNA levels in the mesocorticolimbic system and associated limbic structures. These results suggest that nicotine may enhance melanocortin signaling in the mesocorticolimbic system and this alteration may be an important mechanism mediating nicotine reward.


Assuntos
Regulação da Expressão Gênica , Hipotálamo/efeitos dos fármacos , Nicotina/farmacologia , Pró-Opiomelanocortina/genética , Receptores de Melanocortina/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Pró-Opiomelanocortina/biossíntese , Ratos Sprague-Dawley , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
9.
Pharmacol Biochem Behav ; 131: 91-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687373

RESUMO

BACKGROUND: We have generated high- and low-nicotine preferring (high-NP, low-NP) rat lines using voluntary oral nicotine intake as the selection criterion. After nine generations, the estimated realized heritability for high intake was 0.26. The aim of the current study is to compare how nicotine withdrawal varies between these two lines. This new analysis would help elucidate if nicotine withdrawal and intake share common genetic mechanisms. METHODS: After exposing male and female Sprague Dawley rats (F8 generation) to six weeks of nicotine exposure, nicotine was withdrawn. Somatic signs of withdrawal, locomotor activity, and weight were measured at 16 and 40h. One week after withdrawal, resumption of nicotine intake was determined. RESULTS: The High-NP line had higher nicotine intake before and after withdrawal than the Low-NP line. High-NP rats were more active than Low-NP rats, and locomotor activity decreased during withdrawal; this decrease was more pronounced in the High-NP line. High-NP rats gained more weight during withdrawal than Low-NP rats. Escape attempts decreased during withdrawal in all groups, but overall females demonstrated more escape attempts than males. The other somatic signs of withdrawal were higher during withdrawal compared to baseline and more pronounced in females. CONCLUSIONS: Selection for nicotine preference affected nicotine intake, locomotion and weight, suggesting the heritability of these traits. However, despite differences in nicotine preference and intake, high-NP and low-NP rats showed similar withdrawal responses: escape attempts decreased and somatic signs increased. Withdrawal responses of females were more pronounced than males suggesting sex differences in the negative affect induced by nicotine withdrawal. The major finding of this novel analysis is showing that nicotine preference does not predict withdrawal symptoms. This finding, together with sex differences observed during withdrawal, may contribute to a better understanding of nicotine dependence and have translational value in developing more effective strategies for smoking cessation.


Assuntos
Nicotina/efeitos adversos , Síndrome de Abstinência a Substâncias/genética , Animais , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Endogâmicos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/etiologia , Tabagismo/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa