Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 541(7638): 536-540, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28092920

RESUMO

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


Assuntos
Aclimatação/genética , Temperatura Baixa , Diatomáceas/genética , Evolução Molecular , Genoma/genética , Genômica , Alelos , Dióxido de Carbono/metabolismo , Escuridão , Diatomáceas/metabolismo , Congelamento , Perfilação da Expressão Gênica , Deriva Genética , Camada de Gelo , Ferro/metabolismo , Taxa de Mutação , Oceanos e Mares , Filogenia , Recombinação Genética , Transcriptoma/genética
2.
Cryobiology ; 63(3): 220-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21884691

RESUMO

Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53°C±0.53°C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34°C±0.25°C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability.


Assuntos
Proteínas Anticongelantes/química , Diatomáceas , Isoformas de Proteínas/química , Proteínas Recombinantes de Fusão/química , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/isolamento & purificação , Proteínas Anticongelantes/metabolismo , Clonagem Molecular , Clima Frio , Temperatura Baixa , Cristalização , Diatomáceas/genética , Diatomáceas/metabolismo , Escherichia coli , Congelamento , Camada de Gelo , Corpos de Inclusão/química , Plasmídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Redobramento de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Salinidade , Transformação Bacteriana
3.
Environ Microbiol ; 12(4): 1041-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20105220

RESUMO

Fragilariopsis is a dominating psychrophilic diatom genus in polar sea ice. The two species Fragilariopsis cylindrus and Fragilariopsis curta are able to grow and divide below freezing temperature of sea water and above average sea water salinity. Here we show that antifreeze proteins (AFPs), involved in cold adaptation in several psychrophilic organisms, are widespread in the two polar species. The presence of AFP genes (afps) as a multigene family indicated the importance of this group of genes for the genus Fragilariopsis, possibly contributing to its success in sea ice. Protein phylogeny showed the potential mobility of afps, which appear to have crossed kingdom and domain borders, occurring in Bacteria, diatoms, crustaceans and fungi. Our results revealed a broad distribution of AFPs not only in polar organisms but also in taxa apparently not related to cold environments, suggesting that these proteins may be multifunctional. The relevance of AFPs to Fragilariopsis was also shown by gene expression analysis. Under stress conditions typical for sea ice, with subzero temperatures and high salinities, F. cylindrus and F. curta strongly expressed selected afps. An E/G point mutation in the Fragilariopsis AFPs may play a role in gene expression activity and protein function.


Assuntos
Proteínas de Algas/metabolismo , Proteínas Anticongelantes/metabolismo , Diatomáceas/genética , Água do Mar/microbiologia , Proteínas de Algas/genética , Proteínas Anticongelantes/genética , Temperatura Baixa , DNA de Algas/genética , Diatomáceas/metabolismo , Expressão Gênica , Camada de Gelo/microbiologia , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de DNA
4.
Commun Biol ; 1: 212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534604

RESUMO

Sea ice microbial communities produce large amounts of the sulfur metabolite dimethylsulfoniopropionate (DMSP), a precursor of the climate cooling gas dimethylsulfide. Despite their importance to the polar sulfur cycle, drivers and metabolic pathways of sea ice DMSP are uncertain. Here we report the first measurements of sea ice DMSP sulfur isotopic composition (34S/32S ratio, δ34S). δ34S values in ice cores from the Ross Sea and Weddell Sea reveal considerable variability across seasons and between ice horizons (from +10.6 to +23.6‰). We discuss how the most extreme δ34S values observed could be related to unique DMSP cycling in the seasonally extreme physiochemical conditions of isolated brine inclusions in winter-spring. Using cell cultures, we show that part of the DMSP δ34S variability could be explained by distinct DMSP metabolism in sea ice microalgae. These findings advance our understanding of the sea ice sulfur cycle and metabolic adaptations of microbes in extreme environments.

5.
ISME J ; 9(11): 2537-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25885562

RESUMO

Ice-binding proteins (IBPs) have been isolated from various sea-ice organisms. Their characterisation points to a crucial role in protecting the organisms in sub-zero environments. However, their in situ abundance and diversity in natural sea-ice microbial communities is largely unknown. In this study, we analysed the expression and phylogenetic diversity of eukaryotic IBP transcripts from microbial communities of Arctic and Antarctic sea ice. IBP transcripts were found in abundances similar to those of proteins involved in core cellular processes such as photosynthesis. Eighty-nine percent of the IBP transcripts grouped with known IBP sequences from diatoms, haptophytes and crustaceans, but the majority represented novel sequences not previously characterized in cultured organisms. The observed high eukaryotic IBP expression in natural eukaryotic sea ice communities underlines the essential role of IBPs for survival of many microorganisms in communities living under the extreme conditions of polar sea ice.


Assuntos
Camada de Gelo/microbiologia , Regiões Antárticas , Regiões Árticas , Diatomáceas/genética , Ecossistema , Geografia , Haptófitas , Camada de Gelo/química , Fotossíntese , Filogenia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa