Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 5(9): e1000570, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730696

RESUMO

Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.


Assuntos
Herpesviridae/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Análise por Conglomerados , Evolução Molecular , Células HeLa , Herpesviridae/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Imuno-Histoquímica , Muromegalovirus/genética , Filogenia , Transdução de Sinais , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Vírion/metabolismo
2.
Biochemistry ; 46(37): 10694-702, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17722886

RESUMO

The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.


Assuntos
Cromatografia de Afinidade , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/isolamento & purificação , Escherichia coli/enzimologia , Engenharia Genética/métodos , Mutagênese , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio
3.
Biochemistry ; 44(5): 1653-8, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15683249

RESUMO

The proton-pumping NADH:ubiquinone oxidoreductase, which is also called respiratory complex I, transfers electrons from NADH to ubiquinone via one flavin mononucleotide (FMN) and up to nine iron-sulfur clusters. A structural minimal form of complex I consisting of 14 different subunits called NuoA to NuoN (or Nqo1 to Nqo14) is found in bacteria. The isolated Escherichia coli complex I can be split into a NADH dehydrogenase fragment, a connecting fragment, and a membrane fragment. The soluble NADH dehydrogenase fragment represents the electron input part of the complex and consists of the subunits NuoE, F, and G. The FMN and four iron-sulfur clusters have been detected in this fragment by means of EPR spectroscopy. One of the EPR signals, called N1c, has spectral properties, which are not found in preparations of the complex from other organisms. Therefore, it is attributed to an additional binding motif on NuoG, which is present only in a few bacteria including E. coli. Here, we show by means of EPR spectroscopic analysis of the NADH dehydrogenase fragment containing site-directed mutations on NuoG that the EPR signals in question derived from cluster N1a on NuoE. The mutations in NuoG disturbed the assembly of the overproduced NADH dehydrogenase fragment indicating that a yet undetected cluster might be bound to the additional motif. Thus, there is no third binuclear iron-sulfur "N1c" in the E. coli complex I but an additional tetranuclear cluster that may be coined N7.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Subunidades Proteicas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Citoplasma/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/isolamento & purificação , Dados de Sequência Molecular , NADH Desidrogenase/química , NADH Desidrogenase/genética , NADH Desidrogenase/isolamento & purificação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa