Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 66(8): 1501-1515, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37217659

RESUMO

AIMS/HYPOTHESIS: After birth, the neonatal islets gradually acquire glucose-responsive insulin secretion, a process that is subjected to maternal imprinting. Although NEFA are major components of breastmilk and insulin secretagogues, their role for functional maturation of neonatal beta cells is still unclear. NEFA are the endogenous ligands of fatty acid receptor 1 (FFA1, encoded by Ffar1 in mice), a Gq-coupled receptor with stimulatory effect on insulin secretion. This study investigates the role of FFA1 in neonatal beta cell function and in the adaptation of offspring beta cells to parental high-fat feeding. METHODS: Wild-type (WT) and Ffar1-/- mice were fed high-fat (HFD) or chow diet (CD) for 8 weeks before mating, and during gestation and lactation. Blood variables, pancreas weight and insulin content were assessed in 1-, 6-, 11- and 26-day old (P1-P26) offspring. Beta cell mass and proliferation were determined in P1-P26 pancreatic tissue sections. FFA1/Gq dependence of insulin secretion was evaluated in isolated islets and INS-1E cells using pharmacological inhibitors and siRNA strategy. Transcriptome analysis was conducted in isolated islets. RESULTS: Blood glucose levels were higher in CD-fed Ffar1-/- P6-offspring compared with CD-fed WT P6-offspring. Accordingly, glucose-stimulated insulin secretion (GSIS) and its potentiation by palmitate were impaired in CD Ffar1-/- P6-islets. In CD WT P6-islets, insulin secretion was stimulated four- to fivefold by glucose and five- and sixfold over GSIS by palmitate and exendin-4, respectively. Although parental HFD increased blood glucose in WT P6-offspring, it did not change insulin secretion from WT P6-islets. In contrast, parental HFD abolished glucose responsiveness (i.e. GSIS) in Ffar1-/- P6-islets. Inhibition of Gq by FR900359 or YM-254890 in WT P6-islets mimicked the effect of Ffar1 deletion, i.e. suppression of GSIS and of palmitate-augmented GSIS. The blockage of Gi/o by pertussis toxin (PTX) enhanced (100-fold) GSIS in WT P6-islets and rendered Ffar1-/- P6-islets glucose responsive, suggesting constitutive activation of Gi/o. In WT P6-islets, FR900359 cancelled 90% of PTX-mediated stimulation, while in Ffar1-/- P6-islets it completely abolished PTX-elevated GSIS. The secretory defect of Ffar1-/- P6-islets did not originate from insufficient beta cells, since beta cell mass increased with the offspring's age irrespective of genotype and diet. In spite of that, in the breastfed offspring (i.e. P1-P11) beta cell proliferation and pancreatic insulin content had a genotype- and diet-driven dynamic. Under CD, the highest proliferation rate was reached by the Ffar1-/- P6 offspring (3.95% vs 1.88% in WT P6), whose islets also showed increased mRNA levels of genes (e.g. Fos, Egr1, Jun) typically high in immature beta cells. Although parental HFD increased beta cell proliferation in both WT (4.48%) and Ffar1-/- (5.19%) P11 offspring, only the WT offspring significantly increased their pancreatic insulin content upon parental HFD (5.18 µg under CD to 16.93 µg under HFD). CONCLUSIONS/INTERPRETATION: FFA1 promotes glucose-responsive insulin secretion and functional maturation of newborn islets and is required for adaptive offspring insulin secretion in the face of metabolic challenge, such as parental HFD.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Feminino , Camundongos , Animais , Glucose/farmacologia , Glucose/metabolismo , Secreção de Insulina , Glicemia/metabolismo , Animais Recém-Nascidos , Ilhotas Pancreáticas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Palmitatos/metabolismo
2.
J Am Chem Soc ; 145(22): 11945-11958, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227292

RESUMO

Sulfur-substituted nucleobases are DNA and RNA base derivatives that exhibit extremely efficient photoinduced intersystem crossing (ISC) dynamics into the lowest-energy triplet state. The long-lived and reactive triplet states of sulfur-substituted nucleobases are crucial due to their wide range of potential applications in medicine, structural biology, and the development of organic light-emitting diodes (OLEDs) and other emerging technologies. However, a comprehensive understanding of non-negligible wavelength-dependent changes in the internal conversion (IC) and ISC events is still lacking. Here, we study the underlying mechanism using joint experimental gas-phase time-resolved photoelectron spectroscopy (TRPES) and theoretical quantum chemistry methods. We combine 2,4-dithiouracil (2,4-DTU) TRPES experimental data with computational analysis of the different photodecay processes, which are induced by increasing excitation energies along the entire linear absorption (LA) ultraviolet (UV) spectrum. Our results show how the double-thionated uracil (U), i.e., 2,4-DTU, appears as a versatile photoactivatable instrument. Multiple decay processes can be initiated with different ISC rates or triplet-state lifetimes that resemble the distinctive behavior of the singly substituted 2- or 4-thiouracil (2-TU or 4-TU). We obtained a clear partition of the LA spectrum based on the dominant photoinduced process. Our work clarifies the reasons behind the wavelength-dependent changes in the IC, ISC, and triplet-state lifetimes in doubly thionated U, becoming a biological system of utmost importance for wavelength-controlled applications. These mechanistic details and photoproperties are transferable to closely related molecular systems such as thionated thymines.

3.
J Phys Chem A ; 126(44): 8211-8217, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318646

RESUMO

The ultrafast internal conversion and intersystem crossing dynamics of 2-thiouracil (2TU) and 2-thiothymine (2TT) are studied using time-resolved photoelectron spectroscopy to investigate the effect of methylation on the deactivation mechanism. Like other thiobases, the triplet manifold is populated with high quantum yields via the lowest singlet excited state, which is dark in absorption. This study focuses on the lowest triplet state and the role of two minima, with sulfur-out-of-plane and slightly boat-like geometries, in the intersystem crossing dynamics back to the ground state.


Assuntos
Tiouracila , Timina , Espectroscopia Fotoeletrônica , Tiouracila/química , Metilação , Timina/química
4.
Am J Physiol Cell Physiol ; 320(6): C1000-C1012, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788629

RESUMO

Obesity, especially visceral fat accumulation, increases the risk of type 2 diabetes (T2D). The purpose of this study was to investigate the impact of T2D on the pancreatic fat depot. Pancreatic fat pads from 17 partial pancreatectomized patients (PPP) were collected, pancreatic preadipocytes isolated, and in vitro differentiated. Patients were grouped using HbA1c into normal glucose tolerant (NGT), prediabetic (PD), and T2D. Transcriptome profiles of preadipocytes and adipocytes were assessed by RNAseq. Insulin sensitivity was estimated by quantifying AKT phosphorylation on Western blots. Lipogenic capacity was assessed with oil red O staining, lipolytic activity via fatty acid release. Secreted factors were measured using ELISA. Comparative transcriptome analysis of preadipocytes and adipocytes indicates defective upregulation of genes governing adipogenesis (NR1H3), lipogenesis (FASN, SCD, ELOVL6, and FADS1), and lipolysis (LIPE) during differentiation of cells from T2D-PPP. In addition, the ratio of leptin/adiponectin mRNA was higher in T2D than in NGT-PPP. Preadipocytes and adipocytes of NGT-PPP were more insulin sensitive than T2D-PPP cells in regard to AKT phosphorylation. Triglyceride accumulation was similar in NGT and T2D adipocytes. Despite a high expression of the receptors NPR1 and NPR2 in NGT and T2D adipocytes, lipolysis was stimulated by ANP 1.74-fold in NGT cells only. This stimulation was further increased by the PDE5 inhibitor dipyridamole (3.09-fold). Dipyridamole and forskolin increased lipolysis receptor independently 1.88-fold and 1.48-fold, respectively, solely in NGT cells. In conclusion, the metabolic status persistently affects differentiation and lipolysis of pancreatic adipocytes. These alterations could aggravate the development of T2D.


Assuntos
Adipócitos/fisiologia , Adipogenia/fisiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Lipogênese/fisiologia , Lipólise/fisiologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/fisiologia , Dessaturase de Ácido Graxo Delta-5 , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Fosforilação/fisiologia , Triglicerídeos/metabolismo
5.
Diabetologia ; 64(6): 1358-1374, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765181

RESUMO

AIMS/HYPOTHESIS: Neonatal beta cells carry out a programme of postnatal functional maturation to achieve full glucose responsiveness. A partial loss of the mature phenotype of adult beta cells may contribute to a reduction of functional beta cell mass and accelerate the onset of type 2 diabetes. We previously found that fetuin-A, a hepatokine increasingly secreted by the fatty liver and a determinant of type 2 diabetes, inhibits glucose-stimulated insulin secretion (GSIS) of human islets. Since fetuin-A is a ubiquitous fetal glycoprotein that declines peripartum, we examined here whether fetuin-A interferes with the functional maturity of beta cells. METHODS: The effects of fetuin-A were assessed during in vitro maturation of porcine neonatal islet cell clusters (NICCs) and in adult human islets. Expression alterations were examined via microarray, RNA sequencing and reverse transcription quantitative real-time PCR (qRT-PCR), proteins were analysed by western blotting and immunostaining, and insulin secretion was quantified in static incubations. RESULTS: NICC maturation was accompanied by the gain of glucose-responsive insulin secretion (twofold stimulation), backed up by mRNA upregulation of genes governing beta cell identity and function, such as NEUROD1, UCN3, ABCC8 and CASR (Log2 fold change [Log2FC] > 1.6). An active TGFß receptor (TGFBR)-SMAD2/3 pathway facilitates NICC maturation, since the TGFBR inhibitor SB431542 counteracted the upregulation of aforementioned genes and de-repressed ALDOB, a gene disallowed in mature beta cells. In fetuin-A-treated NICCs, upregulation of beta cell markers and the onset of glucose responsiveness were suppressed. Concomitantly, SMAD2/3 phosphorylation was inhibited. Transcriptome analysis confirmed inhibitory effects of fetuin-A and SB431542 on TGFß-1- and SMAD2/3-regulated transcription. However, contrary to SB431542 and regardless of cMYC upregulation, fetuin-A inhibited beta cell proliferation (0.27 ± 0.08% vs 1.0 ± 0.1% Ki67-positive cells in control NICCs). This effect was sustained by reduced expression (Log2FC ≤ -2.4) of FOXM1, CENPA, CDK1 or TOP2A. In agreement, the number of insulin-positive cells was lower in fetuin-A-treated NICCs than in control NICCs (14.4 ± 1.2% and 22.3 ± 1.1%, respectively). In adult human islets fetuin-A abolished glucose responsiveness, i.e. 1.7- and 1.1-fold change over 2.8 mmol/l glucose in control- and fetuin-A-cultured islets, respectively. In addition, fetuin-A reduced SMAD2/3 phosphorylation and suppressed expression of proliferative genes. Of note, in non-diabetic humans, plasma fetuin-A was negatively correlated (p = 0.013) with islet beta cell area. CONCLUSIONS/INTERPRETATION: Our results suggest that the perinatal decline of fetuin-A relieves TGFBR signalling in islets, a process that facilitates functional maturation of neonatal beta cells. Functional maturity remains revocable in later life, and the occurrence of a metabolically unhealthy milieu, such as liver steatosis and elevated plasma fetuin-A, can impair both function and adaptive proliferation of beta cells. DATA AVAILABILITY: The RNAseq datasets and computer code produced in this study are available in the Gene Expression Omnibus (GEO): GSE144950; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144950.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , alfa-2-Glicoproteína-HS/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Intolerância à Glucose/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Suínos
6.
Phys Chem Chem Phys ; 23(45): 25637-25648, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34783336

RESUMO

Photo-oxa-dibenzocyclooctyne (Photo-ODIBO) undergoes photodecarbonylation under UV excitation to its bright S2 state, forming a highly reactive cyclooctyne, ODIBO. Following 321 nm excitation with sub-50 fs actinic pulses, the excited state evolution and cyclopropenone bond cleavage with CO release were characterized using femtosecond stimulated Raman spectroscopy and time-dependent density functional theory Raman calculations. Analysis of the photo-ODIBO S2 CO Raman band revealed multi-exponential intensity, peak splitting and frequency-shift dynamics. This suggests a stepwise cleavage of the two C-C bonds in the cyclopropenone structure that is completed within <300 fs after excitation. Evidence of intramolecular vibrational relaxation on the S2 state, concurrent with photodecarbonylation, with dynamics matching previous electronic transient absorption spectroscopy, was also observed. This confirms an excited state, as opposed to ground state, photodecarbonylation mechanism resulting in a vibronically excited photoproduct, ODIBO.

7.
J Chem Phys ; 154(7): 074302, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33607886

RESUMO

The ultrafast dynamics of photo-OxaDiBenzocycloOctyne (photo-ODIBO) photo-dissociation was studied using femtosecond transient absorption spectroscopy. Steady-state UV-Vis, time-dependent density functional theory, and 350 nm and 321 nm transient absorption studies are reported. Photo-ODIBO excitation with 321 nm and 350 nm light-induced photodecarbonylation of the cyclopropenone functional group results in the formation of ODIBO. The presence of the photoproduct was confirmed by the results of steady-state photolysis experiments and the observation of absorption signatures of ODIBO in the photo-ODIBO transient absorption spectra. Analysis of the latter revealed the underlying photochemical mechanisms and associated time constants, following excitation of the samples. The dynamics show a multi-exponential decay process, following the dissociation of photo-ODIBO into an excited state of the photoproduct ODIBO within <294 fs after 321 nm excitation. 350 nm excitation, on the other hand, is shown to produce ground state ODIBO via an intermediate species. Additional transient absorption measurements were performed directly on the photoproduct ODIBO to help distinguish spectral signatures associated with these processes.

8.
Phys Chem Chem Phys ; 22(27): 15608-15615, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32613978

RESUMO

The photophysical properties of 2,4-dithiouracil (2,4-DTU) in the gas phase are studied by time-resolved photoelectron spectroscopy (TRPES) with three different excitation wavelengths in direct extension of previous work on uracil (U), 2-thiouracil (2-TU) and 4-thiouracil (4-TU). Non-radiative deactivation in the canonical nucleobases like uracil mainly occurs via internal conversion (IC) along singlet excited states, although intersystem crossing (ISC) to a long-lived triplet state was confirmed to play a minor role. In thionated uracils, ISC to the triplet state becomes ultrafast and highly efficient with a quantum yield near unity; however, the lifetime of the triplet state is strongly dependent on the position of the sulfur atom. In 2-TU, ISC back to the ground state occurs within a few hundred picoseconds, whereas the population remains trapped in the lowest triplet state in the case of 4-TU. Upon doubling the degree of thionation, ISC remains highly efficient and dominates the photophysics of 2,4-DTU. However, several low-lying excited states contribute to competing IC and ISC pathways and a complex deactivation mechanism, which is evaluated here based on TRPES measurements and discussed in the context of the singly thionated uracils.

9.
Nature ; 494(7437): 361-5, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23376950

RESUMO

Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.


Assuntos
Senescência Celular/imunologia , Citocinas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Células Th1/imunologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Ciclo Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Oncogenes/genética , Fosfosserina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição STAT1/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/metabolismo
10.
Molecules ; 23(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388739

RESUMO

We report time-dependent photoelectron spectra recorded with a single-photon ionization setup and extensive simulations of the same spectra for the excited-state dynamics of 2-thiouracil (2TU) in the gas phase. We find that single-photon ionization produces very similar results as two-photon ionization, showing that the probe process does not have a strong influence on the measured dynamics. The good agreement between the single-photon ionization experiments and the simulations shows that the norms of Dyson orbitals allow for qualitatively describing the ionization probabilities of 2TU. This reasonable performance of Dyson norms is attributed to the particular electronic structure of 2TU, where all important neutral and ionic states involve similar orbital transitions and thus the shape of the Dyson orbitals do not strongly depend on the initial neutral and final ionic state. We argue that similar situations should also occur in other biologically relevant thio-nucleobases, and that the time-resolved photoelectron spectra of these bases could therefore be adequately modeled with the techniques employed here.


Assuntos
Modelos Químicos , Espectroscopia Fotoeletrônica , Tiouracila/química , Algoritmos , Fotoquímica , Fótons , Termodinâmica
11.
Diabetologia ; 60(11): 2240-2251, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28791439

RESUMO

AIMS/HYPOTHESIS: Obesity-linked ectopic fat accumulation is associated with the development of type 2 diabetes. Whether pancreatic and liver steatosis impairs insulin secretion is controversial. We examined the crosstalk of human pancreatic fat cells with islets and the role of diabetogenic factors, i.e. palmitate and fetuin-A, a hepatokine released from fatty liver. METHODS: Human pancreatic resections were immunohistochemically stained for insulin, glucagon, somatostatin and the macrophage/monocyte marker CD68. Pancreatic adipocytes were identified by Oil Red O and adiponectin staining. Primary pancreatic pre-adipocytes and differentiated adipocytes were co-cultured with human islets isolated from organ donors and the metabolic crosstalk between fatty liver and fatty pancreas was mimicked by the addition of palmitate and fetuin-A. Insulin secretion was evaluated by ELISA and RIA. Cytokine expression and secretion were assessed by RT-PCR and multiplex assay, respectively. Subcellular distribution of proteins was examined by confocal microscopy and protein phosphorylation by western blotting. RESULTS: In human pancreatic parenchyma, highly differentiated adipocytes were detected in the proximity of islets with normal architecture and hormone distribution. Infiltration of adipocytes was associated with an increased number of CD68-positive cells within islets. In isolated primary pancreatic pre-adipocytes and differentiated adipocytes, palmitate and fetuin-A induced IL6, CXCL8 and CCL2 mRNA expression. Cytokine production was toll-like receptor 4 (TLR4)-dependent and further accentuated in pre-adipocytes when co-cultured with islets. In islets, IL6 and CXCL8 mRNA levels were also increased by fetuin-A and palmitate. Only in macrophages within the isolated islets, palmitate and fetuin-A stimulated the production of the cytotoxic cytokine IL-1ß. Palmitate, but not fetuin-A, exerted pro-apoptotic effects in islet cells. Instead, fetuin-A impaired glucose-induced insulin secretion in a TLR4-independent, but c-Jun N-terminal kinase- and Ca2+-dependent, manner. CONCLUSIONS/INTERPRETATION: These results provide the first evidence that fetuin-A-mediated metabolic crosstalk of fatty liver with islets may contribute to obesity-linked glucose blindness of beta cells, while fatty pancreas may exacerbate local inflammation.


Assuntos
Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Inflamação/metabolismo , Inflamação/patologia , Insulina/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Animais , Western Blotting , Células Cultivadas , Quimiocina CCL2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Imuno-Histoquímica , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-6/genética , Interleucina-8/genética , Camundongos , Palmitatos/metabolismo , Receptor 4 Toll-Like , alfa-2-Glicoproteína-HS/metabolismo
12.
J Am Chem Soc ; 139(40): 14029-14032, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925255

RESUMO

Irradiation of cyclopropenone-masked dibenzocyclooctynes with near-infrared pulses from a femtosecond laser triggers photodecarbonylation via nonresonant two- or three-photon excitation. Multiphoton-generated cyclooctynes undergo a SPAAC reaction with organic azides, yielding the expected triazoles. Multiphoton-triggered SPAAC (MP-SPAAC) enables high resolution 3-D photoclick derivatization of hydrogels and tissues.

13.
Phys Chem Chem Phys ; 19(30): 19756-19766, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28630971

RESUMO

Single-atom substitution within a natural nucleobase-such as replacing oxygen by sulfur in uracil-can result in drastic changes in the relaxation dynamics after UV excitation. While the photodynamics of natural nucleobases like uracil are dominated by pathways along singlet excited states, the photodynamics of thiobases like 2-thiouracil populate the triplet manifold with near unity quantum yield. In the present study, a synergistic approach based on time-resolved photoelectron spectroscopy (TRPES), time-resolved absorption spectroscopy (TRAS), and ab initio computations has been particularly successful at unraveling the underlying photophysical principles and describing the dissimilarities between the natural and substituted nucleobases. Specifically, we find that varying the excitation wavelength leads to differences between gas-phase and condensed-phase experimental results. Systematic trends are observed in the intersystem crossing time constants with varying excitation wavelength, which can be readily interpreted in the context of ab initio calculations performed both in vacuum and including solvent effects. Thus, the combination of TRPES and TRAS experiments with high-level computational techniques allows us to characterize the topology of the potential energy surfaces defining the relaxation dynamics of 2-thiouracil in both gas and condensed phases, as well as investigate the accessibility of conical intersections and crossings, and potential energy barriers along the associated relaxation coordinates.

14.
Phys Chem Chem Phys ; 18(30): 20168-76, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27189184

RESUMO

The photodynamic properties of molecules determine their ability to survive in harsh radiation environments. As such, the photostability of heterocyclic aromatic compounds to electromagnetic radiation is expected to have been one of the selection pressures influencing the prebiotic chemistry on early Earth. In the present study, the gas-phase photodynamics of uracil, 5-methyluracil (thymine) and 2-thiouracil-three heterocyclic compounds thought to be present during this era-are assessed in the context of their recently proposed intersystem crossing pathways that compete with internal conversion to the ground state. Specifically, time-resolved photoelectron spectroscopy measurements evidence femtosecond to picosecond timescales for relaxation of the singlet (1)ππ* and (1)nπ* states as well as for intersystem crossing to the triplet manifold. Trapping in the excited triplet state and intersystem crossing back to the ground state are investigated as potential factors contributing to the susceptibility of these molecules to ultraviolet photodamage.

15.
Diabetologia ; 58(12): 2819-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363783

RESUMO

AIMS/HYPOTHESIS: Forkhead box protein O1 (FOXO1) is a transcription factor essential for beta cell fate. Protein kinase B-dependent phosphorylation of FOXO1 at S256 (P-FOXO1) enables its binding to 14-3-3 dimers and nuclear export. Dephosphorylated FOXO1 enters nuclei and activates pro-apoptotic genes. Since our previous observations suggest that protein kinase C delta (PKCδ) induces nuclear accumulation of FOXO1, the underlying mechanism was examined. METHODS: In human islets, genetically modified mice and INS-1E cells apoptosis was assessed by TUNEL staining. Subcellular translocation of proteins was examined by confocal microscopy and signalling pathways were analysed by western blotting and overlay assay. RESULTS: In PKCδ-overexpressing (PKCδ-tg) mouse islet cells and INS-1E cells FOXO1 accumulated in nuclei, surprisingly, as P-FOXO1. PKCδ-tg decelerated IGF-1-dependent stimulation of nuclear export, indicating that changes in export caused nuclear retention of P-FOXO1. Nuclear accumulation of P-FOXO1 was accompanied by increased phosphorylation of 14-3-3ζ at S58 and reduced dimerisation of 14-3-3ζ. Palmitic acid further augmented phosphorylation of 14-3-3ζ and triggered nuclear accumulation of FOXO1 in both INS-1E and human islet cells. Furthermore, the overexpression of a phosphomimicking mutant of 14-3-3ζ (S58D) enhanced nuclear FOXO1. In accordance with the nuclear accumulation of P-FOXO1, PKCδ overexpression alone did not increase apoptotic cell death. Additionally, insulin secretion and glucose homeostasis in PKCδ-overexpressing mice remained unaffected. CONCLUSIONS/INTERPRETATION: These results suggest that PKCδ-mediated phosphorylation of 14-3-3ζ contributes to the nuclear retention of FOXO1, even when FOXO1 is phosphorylated as under non-stress conditions. P-FOXO1 does not induce pro-apoptotic genes, but may rather exert beneficial effects on beta cells.


Assuntos
Proteínas 14-3-3/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Quinase C-delta/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Núcleo Celular/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/genética , Cultura Primária de Células , Proteína Quinase C-delta/genética , Transdução de Sinais/genética
16.
Cell Physiol Biochem ; 35(4): 1537-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25792236

RESUMO

AIMS: GPR40/FFAR1 mediates palmitate-induced stimulation of insulin secretion but its involvement in lipotoxicity is controversial. Our previous observations suggest that FFAR1/GPR40 agonists protect against lipotoxicity although the underlying mechanism remains elusive. The present study examines the role of ERK1/2 and GPR40/FFAR1 in palmitate-induced stimulation of insulin secretion and beta cell death. METHODS: Insulin secretion of INS-1E cells was measured by radioimmunoassay. Protein phosphorylation was examined on Western blots. Apoptosis was assessed by TUNEL staining. RESULTS: Palmitate and the GPR40/FFAR1 agonist TUG-469 increased phosphorylation of ERK1/2 at low (2.8 mmol/L) and high (12 mmol/L) glucose but stimulated insulin secretion only at high glucose. The MEK1 inhibitor PD98059 significantly reduced phosphorylation of ERK1/2 but did not reverse the stimulation of secretion induced by glucose, palmitate or TUG-469. PD98059 rather augmented glucose-induced secretion. Prolonged exposure to palmitate stimulated apoptosis, an effect counteracted by TUG-469. PD98059 accentuated palmitate-induced apoptosis and reversed TUG-469-mediated inhibition of cell death. CONCLUSIONS: Activation of ERK1/2 by palmitate and GPR40/FFAR1 agonist correlates neither with stimulation of insulin secretion nor with induction of apoptosis. The results suggest a significant anti-apoptotic role of ERK1/2 under conditions of lipotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Palmitatos/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Compostos de Anilina/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Flavonoides/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , Camundongos , Fenilpropionatos/farmacologia , Fosforilação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas
17.
Cell Physiol Biochem ; 35(6): 2272-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25895678

RESUMO

BACKGROUND/AIMS: Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. METHODS AND RESULTS: After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. CONCLUSION: This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver.


Assuntos
Encéfalo/metabolismo , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Ácidos Linoleicos Conjugados/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/metabolismo
18.
Top Curr Chem ; 355: 1-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25381199

RESUMO

Photoinduced processes in nucleic acids are phenomena of fundamental interest in diverse fields, from prebiotic studies, through medical research on carcinogenesis, to the development of bioorganic photodevices. In this contribution we survey many aspects of the research across the boundaries. Starting from a historical background, where the main milestones are identified, we review the main findings of the physical-chemical research of photoinduced processes on several types of nucleic-acid fragments, from monomers to duplexes. We also discuss a number of different issues which are still under debate.


Assuntos
Ácidos Nucleicos/efeitos da radiação , Purinas/efeitos da radiação , Pirimidinas/efeitos da radiação , Raios Ultravioleta , Pareamento de Bases/efeitos da radiação , Conformação de Ácido Nucleico/efeitos da radiação , Ácidos Nucleicos/química , Processos Fotoquímicos , Purinas/química , Pirimidinas/química
19.
Phys Chem Chem Phys ; 17(38): 25197-209, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352156

RESUMO

A wavelength dependent study investigating the low-lying (1)La and (1)Lb states, both possessing (1)ππ* character, and the (1)πσ* state in the deactivation process of indole is presented here. Relaxation dynamics following excitation at 241, 250, 260, 270, 273, and 282 nm are examined using three gas-phase, pump-probe spectroscopic techniques: (1) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), (2) time-resolved photoelectron spectroscopy (TR-PES), and (3) time-resolved ion yield (TR-IY). Applied in combination, a more complete picture of the indole relaxation dynamics may be gleaned. For instance, TR-PES experiments directly observe all relaxation pathways by probing the evolution of the excited states following photoexcitation; whereas, TR-KER measurements indirectly, yet specifically, probe for (1)πσ*-state activity through the detection of H-atoms eliminated along the indole nitrogen-hydrogen (N-H) stretch coordinate-a possible outcome of (1)πσ*-state relaxation in indole. In addition, mass information obtained via TR-IY monitors fragmentation dynamics that may occur within the neutral electronically excited and/or cationic states. The work herein assesses the onset and importance of the (1)πσ* state at various pump wavelengths by systematically tuning across the ultraviolet absorption spectrum of indole with a particular focus on those pump wavelengths longer than 263 nm, where the involvement of the (1)πσ* state is under current debate. As far as this experimental work is concerned, there does not appear to be any significant involvement by the (1)πσ* state in the indole relaxation processes following excitation at 270, 273, or 282 nm. This investigation also evaluates the primary orbital promotions contributing to the (1)La, (1)Lb, and (1)πσ* transitions based on ionization preferences observed in TR-PES spectra. Relaxation time constants associated with dynamics along these states are also reported for excitation at all of the aforementioned pump wavelengths and are used to pinpoint the origin of the discrepancies found in the literature. In this context, advantages and disadvantages of the three experimental techniques are discussed.


Assuntos
Indóis/química , Elétrons , Cinética , Espectroscopia Fotoeletrônica , Teoria Quântica , Termodinâmica
20.
Diabetologia ; 57(4): 776-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24463963

RESUMO

AIMS/HYPOTHESIS: Adequate evaluation of protein expression is a crucial prerequisite for functional studies. Commonly used strategies comprise detection of proteins by specific antibodies using western blotting and immunohistochemical staining, or detection of mRNA by in situ hybridisation and RT-PCR. We evaluated the tools for the detection of free fatty acid receptor 1 (FFAR1) expression. METHODS: Commercially available antibody preparations were used to detect endogenous expression of the FFAR1 receptor and this was compared with cell preparations deficient or overexpressing the mouse or human receptor. Concentrations of mRNA were evaluated by RT-PCR. RESULTS: All insulin-secreting cells, INS-1E, Min6 and mouse islets showed specific expression of Ffar1 at the mRNA level. However, none of the commercially available antibodies specifically detected rat, mouse or human FFAR1. CONCLUSIONS/INTERPRETATION: Proper positive and negative controls are an important prerequisite for the evaluation of FFAR1 expression.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Western Blotting , Linhagem Celular , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas/metabolismo , Camundongos , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa