Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 100(1): 211-269, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437091

RESUMO

The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.


Assuntos
Rim/metabolismo , Nucleotídeos/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Rim/fisiologia , Receptores Purinérgicos P2/fisiologia
2.
Am J Physiol Renal Physiol ; 326(6): F894-F916, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634137

RESUMO

Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/psicologia , Insuficiência Renal Crônica/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Humanos , Camundongos , Peixe-Zebra , Cognição , Ratos , Rim/fisiopatologia , Rim/metabolismo
3.
Nephrol Dial Transplant ; 38(11): 2617-2626, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37230953

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is common but heterogenous and is associated with multiple adverse outcomes. The National Unified Renal Translational Research Enterprise (NURTuRE)-CKD cohort was established to investigate risk factors for clinically important outcomes in persons with CKD referred to secondary care. METHODS: Eligible participants with CKD stages G3-4 or stages G1-2 plus albuminuria >30 mg/mmol were enrolled from 16 nephrology centres in England, Scotland and Wales from 2017 to 2019. Baseline assessment included demographic data, routine laboratory data and research samples. Clinical outcomes are being collected over 15 years by the UK Renal Registry using established data linkage. Baseline data are presented with subgroup analysis by age, sex and estimated glomerular filtration rate (eGFR). RESULTS: A total of 2996 participants was enrolled. Median (interquartile range) age was 66 (54-74) years, eGFR 33.8 (24.0-46.6) mL/min/1.73 m2 and urine albumin to creatinine ratio 209 (33-926) mg/g; 58.5% were male. Of these participants, 1883 (69.1%) were in high-risk CKD categories. Primary renal diagnosis was CKD of unknown cause in 32.3%, glomerular disease in 23.4% and diabetic kidney disease in 11.5%. Older participants and those with lower eGFR had higher systolic blood pressure and were less likely to be treated with renin-angiotensin system inhibitors (RASi) but were more likely to receive a statin. Female participants were less likely to receive a RASi or statin. CONCLUSIONS: NURTuRE-CKD is a prospective cohort of persons who are at relatively high risk of adverse outcomes. Long-term follow-up and a large biorepository create opportunities for research to improve risk prediction and to investigate underlying mechanisms to inform new treatment development.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Insuficiência Renal Crônica , Masculino , Humanos , Feminino , Idoso , Taxa de Filtração Glomerular , Estudos Prospectivos , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/complicações , Fatores de Risco , Inglaterra , Albuminúria/epidemiologia
4.
Curr Opin Urol ; 33(2): 129-135, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562282

RESUMO

PURPOSE OF REVIEW: This short review is intended to highlight the potential role of inflammation as a key pathological driver, rather than a mere consequence, of nephrolithiasis. Although there is clearly a strong likelihood that the relationship is bidirectional, and that kidney stone-triggered inflammation can establish a vicious cycle of tissue injury and stone formation. RECENT FINDINGS: These consist of data from both recent preclinical and clinical studies demonstrating the importance of inflammation in models of stone disease and in kidney tissue from patients with nephrolithiasis, and as a potential driver of disease recurrence and a suitable treatment target. In particular, the role of immune cells and their relationship to the NLRP3 inflammasome is becoming clearer, as well as the potential contribution to tissue injury and stone formation of the pro-inflammatory cytokines interleukin-1ß and interleukin-18. SUMMARY: This concept is not new and raises the possibility that targeting inflammation directly may prove to be a novel and suitable means of treatment for at least some types of kidney stone, and in certain clinical settings, both acutely and as prevention, especially in those patients experiencing recurrent stone episodes and/or who have a well defined metabolic cause such as uric acid or calcium oxalate stones.


Assuntos
Cálculos Renais , Humanos , Cálculos Renais/etiologia , Cálculos Renais/terapia , Cálculos Renais/metabolismo , Inflamação , Recidiva , Rim
5.
J Pathol ; 257(3): 300-313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35239186

RESUMO

P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1ß via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1ß in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1ß independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glomerulonefrite , Receptores Purinérgicos P2X7 , Vasculite , Trifosfato de Adenosina/metabolismo , Animais , Caspase 1/metabolismo , Caspases , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores Purinérgicos P2X7/metabolismo , Vasculite/metabolismo , Vasculite/patologia
6.
Pediatr Nephrol ; 37(5): 973-982, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34050397

RESUMO

The proximal tubule (PT) reabsorbs most of the glomerular filtrate and plays an important role in the uptake, metabolism and excretion of xenobiotics. Some therapeutic drugs are harmful to the PT, and resulting nephrotoxicity is thought to be responsible for approximately 1 in 6 of cases of children hospitalized with acute kidney injury (AKI). Clinically, PT dysfunction leads to urinary wasting of important solutes normally reabsorbed by this nephron segment, leading to systemic complications such as bone demineralization and a clinical scenario known as the renal Fanconi syndrome (RFS). While PT defects can be diagnosed using a combination of blood and urine markers, including urinary excretion of low molecular weight proteins (LMWP), standardized definitions of what constitutes clinically significant toxicity are lacking, and identifying which patients will go on to develop progressive loss of kidney function remains a major challenge. In addition, much of our understanding of cellular mechanisms of drug toxicity is still limited, partly due to the constraints of available cell and animal models. However, advances in new and more sophisticated in vitro models of the PT, along with the application of high-content analytical methods that can provide readouts more relevant to the clinical manifestations of nephrotoxicity, are beginning to extend our knowledge. Such technical progress should help in discovering new biomarkers that can better detect nephrotoxicity earlier and predict its long-term consequences, and herald a new era of more personalized medicine.


Assuntos
Injúria Renal Aguda , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Síndrome de Fanconi , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/metabolismo , Animais , Síndrome de Fanconi/induzido quimicamente , Feminino , Humanos , Glomérulos Renais , Túbulos Renais Proximais/metabolismo , Masculino
7.
J Physiol ; 599(1): 323-341, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107589

RESUMO

KEY POINTS: The presence of plasma proteins in urine is difficult to interpret quantitatively. It may be a result of impaired glomerular filtration or impaired proximal tubule (PT) reabsorption, or both. Dent1 disease (CLCN5 mutation) abolishes PT protein reabsorption leaving glomerular function intact. Using urine protein measurements from patients with Dent1 disease and normal individuals, we devised a mathematical model that incorporates two PT transport processes with distinct kinetics. This model predicts albumin, α1 -microglobulin (α1 -m), ß2 -microglobulin (ß2 -m) and retinol-binding protein 4 (RBP4) urine concentrations. Our results indicate that the urinary excretion of ß2 -m and RBP4 differs from that of albumin and α1 -m in their sensitivity to changes in the glomerular filtration rate, glomerular protein leak, tubular protein uptake via endocytosis and PT water reabsorption. The model predicts quantitatively how hyperfiltration and glomerular leak interact to promote albuminuria. Our model should contribute to improved understanding and interpretation of urine protein measurements in renal disease. ABSTRACT: To clarify the relative contributions of glomerular filtration and tubular uptake to urinary protein excretion, we developed a mathematical model of protein reabsorption in the human proximal tubule (PT) using Michaelis-Menten kinetics and molar urinary protein measurements taken from human Dent1 disease (CLCN5 loss-of-function mutation). ß2 -Microglobulin (ß2 -m) and retinol-binding protein 4 (RBP4) are normally reabsorbed with 'very high' efficiency uptake kinetics and fractional urinary excretion of 0.025%, whereas albumin and α1 -microglobulin (α1 -m) are reabsorbed by 'high' efficiency uptake kinetics and 50-fold higher fractional urinary excretion of 1.15%. Our model correctly predicts the urinary ß2 -m, RBP4 and α1 -m content in aristolochic acid nephropathy, and elevated ß2 -m excretion with increased single nephron glomerular filtration rate (SNGFR) following unilateral-nephrectomy. We explored how altered endocytic uptake, water reabsorption, SNGFR and glomerular protein filtration affect excretion. Our results help to explain why ß2 -m and RBP4 are more sensitive markers of PT dysfunction than albumin or α1 -m, and suggest that reduced PT sodium and water reabsorption in Fanconi syndrome may contribute to proteinuria. Transition of albumin excretion from normal to microalbuminuria, a 5-fold increase, corresponds to a 3.5-fold elevation in albumin glomerular filtration, supporting the use of microalbuminuria screening to detect glomerular leak in diabetes. In macroalbuminuria, small albumin permeability changes produce large changes in excretion. However, changes in SNGFR can alter protein excretion, and hyperfiltration with glomerular leak can combine to increase albuminuria. Our model provides a validated quantitative description of the transport processes underlying the protein composition of human urine in normal and pathophysiological states.


Assuntos
Albuminúria , Proteinúria , Taxa de Filtração Glomerular , Humanos , Mutação , Proteínas Plasmáticas de Ligação ao Retinol , Microglobulina beta-2
8.
FASEB J ; 34(6): 8510-8525, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367531

RESUMO

Alpha intercalated cells (αICs) in the kidney collecting duct (CD) belong to a family of mitochondria rich cells (MRCs) and have a crucial role in acidifying the urine via apical V-ATPase pumps. The nature of metabolism in αICs and its relationship to transport was not well-understood. Here, using multiphoton live cell imaging in mouse kidney tissue, FIB-SEM, and other complementary techniques, we provide new insights into mitochondrial structure and function in αICs. We show that αIC mitochondria have a rounded structure and are not located in close proximity to V-ATPase containing vesicles. They display a bright NAD(P)H fluorescence signal and low uptake of voltage-dependent dyes, but are energized by a pH gradient. However, expression of complex V (ATP synthase) is relatively low in αICs, even when stimulated by metabolic acidosis. In contrast, anaerobic glycolytic capacity is surprisingly high, and sufficient to maintain intracellular calcium homeostasis in the presence of complete aerobic inhibition. Moreover, glycolysis is essential for V-ATPase-mediated proton pumping. Key findings were replicated in narrow/clear cells in the epididymis, also part of the MRC family. In summary, using a range of cutting-edge techniques to investigate αIC metabolism in situ, we have discovered that these mitochondria dense cells have a high glycolytic capacity.


Assuntos
Glicólise/fisiologia , Túbulos Renais Coletores/metabolismo , Mitocôndrias/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Epididimo/metabolismo , Células Epiteliais/metabolismo , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bombas de Próton/metabolismo , ATPases Translocadoras de Prótons/metabolismo
9.
Nephrol Dial Transplant ; 37(Suppl 2): ii55-ii62, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34739540

RESUMO

Kidney dysfunction can profoundly influence many organ systems, and recent evidence suggests a potential role for increased albuminuria in the development of mild cognitive impairment (MCI) or dementia. Epidemiological studies conducted in different populations have demonstrated that the presence of increased albuminuria is associated with a higher relative risk of MCI or dementia both in cross-sectional analyses and in studies with long-term follow-up. The underlying pathophysiological mechanisms of albuminuria's effect are as yet insufficiently studied, with several important knowledge gaps still present in a complex relationship with other MCI and dementia risk factors. Both the kidney and the brain have microvascular similarities that make them sensitive to endothelial dysfunction involving different mechanisms, including oxidative stress and inflammation. The exact substrate of MCI and dementia is still under investigation, however available experimental data indicate that elevated albuminuria and low glomerular filtration rate are associated with significant neuroanatomical declines in hippocampal function and grey matter volume. Thus, albuminuria may be critical in the development of cognitive impairment and its progression to dementia. In this review, we summarize the available evidence on albuminuria's link to MCI and dementia, point to existing gaps in our knowledge and suggest actions to overcome them. The major question of whether interventions that target increased albuminuria could prevent cognitive decline remains unanswered. Our recommendations for future research are aimed at helping to plan clinical trials and to solve the complex conundrum outlined in this review, with the ultimate goal of improving the lives of patients with chronic kidney disease.


Assuntos
Disfunção Cognitiva , Demência , Albuminúria/complicações , Disfunção Cognitiva/etiologia , Estudos Transversais , Demência/complicações , Demência/etiologia , Progressão da Doença , Humanos , Fatores de Risco
10.
Nephrol Dial Transplant ; 37(Suppl 2): ii4-ii12, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718761

RESUMO

Metabolic acidosis, defined as a plasma or serum bicarbonate concentration <22 mmol/L, is a frequent consequence of chronic kidney disease (CKD) and occurs in ~10-30% of patients with advanced stages of CKD. Likewise, in patients with a kidney transplant, prevalence rates of metabolic acidosis range from 20% to 50%. CKD has recently been associated with cognitive dysfunction, including mild cognitive impairment with memory and attention deficits, reduced executive functions and morphological damage detectable with imaging. Also, impaired motor functions and loss of muscle strength are often found in patients with advanced CKD, which in part may be attributed to altered central nervous system (CNS) functions. While the exact mechanisms of how CKD may cause cognitive dysfunction and reduced motor functions are still debated, recent data point towards the possibility that acidosis is one modifiable contributor to cognitive dysfunction. This review summarizes recent evidence for an association between acidosis and cognitive dysfunction in patients with CKD and discusses potential mechanisms by which acidosis may impact CNS functions. The review also identifies important open questions to be answered to improve prevention and therapy of cognitive dysfunction in the setting of metabolic acidosis in patients with CKD.


Assuntos
Acidose , Disfunção Cognitiva , Transtornos Motores , Insuficiência Renal Crônica , Acidose/etiologia , Bicarbonatos , Disfunção Cognitiva/etiologia , Humanos , Transtornos Motores/complicações
11.
Nephrol Dial Transplant ; 37(Suppl 2): ii46-ii55, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34792176

RESUMO

Kidney function has two important elements: glomerular filtration and tubular function (secretion and reabsorption). A persistent decrease in glomerular filtration rate (GFR), with or without proteinuria, is diagnostic of chronic kidney disease (CKD). While glomerular injury or disease is a major cause of CKD and usually associated with proteinuria, predominant tubular injury, with or without tubulointerstitial disease, is typically non-proteinuric. CKD has been linked with cognitive impairment, but it is unclear how much this depends on a decreased GFR, altered tubular function or the presence of proteinuria. Since CKD is often accompanied by tubular and interstitial dysfunction, we explore here for the first time the potential role of the tubular and tubulointerstitial compartments in cognitive dysfunction. To help address this issue we selected a group of primary tubular diseases with preserved GFR in which to review the evidence for any association with brain dysfunction. Cognition, mood, neurosensory and motor disturbances are not well characterized in tubular diseases, possibly because they are subclinical and less prominent than other clinical manifestations. The available literature suggests that brain dysfunction in tubular and tubulointerstitial diseases is usually mild and is more often seen in disorders of water handling. Brain dysfunction may occur when severe electrolyte and water disorders in young children persist over a long period of time before the diagnosis is made. We have chosen Bartter and Gitelman syndromes and nephrogenic diabetes insipidus as examples to highlight this topic. We discuss current published findings, some unanswered questions and propose topics for future research.


Assuntos
Nefropatias , Nefrite Intersticial , Insuficiência Renal Crônica , Encéfalo , Criança , Pré-Escolar , Taxa de Filtração Glomerular , Humanos , Nefropatias/diagnóstico , Nefrite Intersticial/complicações , Proteinúria/etiologia , Insuficiência Renal Crônica/complicações
12.
Kidney Blood Press Res ; 46(5): 639-646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34662882

RESUMO

BACKGROUND: It is just over a century since the 1918 flu pandemic, sometimes referred to as the "mother" of pandemics. This brief retrospective of the 1918 pandemic is taken from the viewpoint of the current SARS-CoV-2/COVID-19 pandemic and is based on a short lecture given during the 2021 Virtual Congress of the ERA-EDTA. SUMMARY: This review summarizes and highlights some of the earlier pandemic's salient features, some parallels with today, and some potential learnings, bearing in mind that the flu pandemic occurred over 100 years ago at a time of major turmoil during the climax to WWl, and with limited medical expertise and knowledge, research facilities, or well-structured and resourced healthcare services. While there is little or no information on renal complications at the time, or an effective treatment, some observations in relation to COVID-19 and vaccination are included. Key Messages: Lessons are difficult to draw from 1918 other than the importance and value of non-pharmaceutical measures to limit viral transmission. While the economic impact of the 1918 pandemic was significant, as it is now with COVID-19, subsequent economic analysis has shown that protecting public health and preserving economic activity are not mutually exclusive. Both H1N1 and SARS-CoV-2 viruses are neurotropic and may cause chronically debilitating neurological diseases, including conditions such as encephalitis lethargica (still debated) and myalgic encephalomyelitis (chronic fatigue syndrome), respectively. Although coronavirus and influenza viral infections have some similarities, they are certainly not the same, as we are realising, and future infectious pandemics may still surprise us, but being "forewarned is forearmed."


Assuntos
COVID-19 , Influenza Pandêmica, 1918-1919/história , Influenza Humana/transmissão , Pandemias , COVID-19/complicações , COVID-19/economia , História do Século XX , História do Século XXI , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Pandêmica, 1918-1919/economia
13.
J Am Soc Nephrol ; 31(2): 350-364, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31879336

RESUMO

BACKGROUND: Myeloperoxidase released after neutrophil and monocyte activation can generate reactive oxygen species, leading to host tissue damage. Extracellular glomerular myeloperoxidase deposition, seen in ANCA-associated vasculitis, may enhance crescentic GN through antigen-specific T and B cell activation. Myeloperoxidase-deficient animals have attenuated GN early on, but augmented T cell responses. We investigated the effect of myeloperoxidase inhibition, using the myeloperoxidase inhibitor AZM198, to understand its potential role in treating crescentic GN. METHODS: We evaluated renal biopsy samples from patients with various forms of crescentic GN for myeloperoxidase and neutrophils, measured serum myeloperoxidase concentration in patients with ANCA-associated vasculitis and controls, and assessed neutrophil extracellular trap formation, reactive oxygen species production, and neutrophil degranulation in ANCA-stimulated neutrophils in the absence and presence of AZM198. We also tested the effect of AZM198 on ANCA-stimulated neutrophil-mediated endothelial cell damage in vitro, as well as on crescentic GN severity and antigen-specific T cell reactivity in the murine model of nephrotoxic nephritis. RESULTS: All biopsy specimens with crescentic GN had extracellular glomerular myeloperoxidase deposition that correlated significantly with eGFR and crescent formation. In vitro, AZM198 led to a significant reduction in neutrophil extracellular trap formation, reactive oxygen species production, and released human neutrophil peptide levels, and attenuated neutrophil-mediated endothelial cell damage. In vivo, delayed AZM198 treatment significantly reduced proteinuria, glomerular thrombosis, serum creatinine, and glomerular macrophage infiltration, without increasing adaptive T cell responses. CONCLUSIONS: Myeloperoxidase inhibition reduced neutrophil degranulation and neutrophil-mediated endothelial cell damage in patients with ANCA-associated vasculitis. In preclinical crescentic GN, delayed myeloperoxidase inhibition suppressed kidney damage without augmenting adaptive immune responses, suggesting it might offer a novel adjunctive therapeutic approach in crescentic GN.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/imunologia , Células Endoteliais/patologia , Glomerulonefrite/tratamento farmacológico , Ativação de Neutrófilo/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Imunidade Adaptativa/efeitos dos fármacos , Animais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/tratamento farmacológico , Degranulação Celular/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Peroxidase/sangue , Peroxidase/metabolismo
14.
Am J Physiol Renal Physiol ; 319(2): F292-F303, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686520

RESUMO

In proteinuric renal diseases, excessive plasma nonesterified free fatty acids bound to albumin can leak across damaged glomeruli to be reabsorbed by renal proximal tubular cells and cause inflammatory tubular cells damage by as yet unknown mechanisms. The present study was designed to investigate these mechanisms induced by palmitic acid (PA; one of the nonesterified free fatty acids) overload. Our results show that excess PA stimulates ATP release through the pannexin 1 channel in human renal tubule epithelial cells (HK-2), increasing extracellular ATP concentration approximately threefold compared with control. The ATP release is dependent on caspase-3/7 activation induced by mitochondrial reactive oxygen species. Furthermore, extracellular ATP aggravates PA-induced monocyte chemoattractant protein-1 secretion and monocyte infiltration of tubular cells, enlarging the inflammatory response in both macrophages and HK-2 cells via the purinergic P2X7 receptor-mammalian target of rapamycin-forkhead box O1-thioredoxin-interacting protein/NOD-like receptor protein 3 inflammasome pathway. Hence, PA increases mitochondrial reactive oxygen species-induced ATP release and inflammatory stress, which cause a "first hit," while ATP itself is a "second hit" in amplifying the renal tubular inflammatory response. Thus, inhibition of ATP release or the purinergic P2X7 receptor may be an approach to reduce renal inflammation and improve renal function.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Inflamassomos/metabolismo , Túbulos Renais/metabolismo , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Pflugers Arch ; 471(1): 83-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393837

RESUMO

Inorganic phosphate (Pi) is an abundant element in the body and is essential for a wide variety of key biological processes. It plays an essential role in cellular energy metabolism and cell signalling, e.g. adenosine and guanosine triphosphates (ATP, GTP), and in the composition of phospholipid membranes and bone, and is an integral part of DNA and RNA. It is an important buffer in blood and urine and contributes to normal acid-base balance. Given its widespread role in almost every molecular and cellular function, changes in serum Pi levels and balance can have important and untoward effects. Pi homoeostasis is maintained by a counterbalance between dietary Pi absorption by the gut, mobilisation from bone and renal excretion. Approximately 85% of total body Pi is present in bone and only 1% is present as free Pi in extracellular fluids. In humans, extracellular concentrations of inorganic Pi vary between 0.8 and 1.2 mM, and in plasma or serum Pi exists in both its monovalent and divalent forms (H2PO4- and HPO42-). In the intestine, approximately 30% of Pi absorption is vitamin D regulated and dependent. To help maintain Pi balance, reabsorption of filtered Pi along the renal proximal tubule (PT) is via the NaPi-IIa and NaPi-IIc Na+-coupled Pi cotransporters, with a smaller contribution from the PiT-2 transporters. Endocrine factors, including, vitamin D and parathyroid hormone (PTH), as well as newer factors such as fibroblast growth factor (FGF)-23 and its coreceptor α-klotho, are intimately involved in the control of Pi homeostasis. A tight regulation of Pi is critical, since hyperphosphataemia is associated with increased cardiovascular morbidity in chronic kidney disease (CKD) and hypophosphataemia with rickets and growth retardation. This short review considers the control of Pi balance by vitamin D, PTH and Pi itself, with an emphasis on the insights gained from human genetic disorders and genetically modified mouse models.


Assuntos
Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/metabolismo , Vitamina D/metabolismo , Animais , Fator de Crescimento de Fibroblastos 23 , Homeostase , Humanos , Reabsorção Renal
16.
Nephrol Dial Transplant ; 34(1): 38-39, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982819

RESUMO

Hypokalaemia with alkalosis can suggest excess aldosterone. Aldosterone stimulates the collecting duct mineralocorticoid receptor (MR) to upregulate the epithelial sodium channel (ENaC) and stimulate electrogenic sodium reabsorption, with secretion of potassium and protons. Gitelman, Bartter and Liddle syndrome, and liquorice ingestion all cause hypokalaemic alkalosis. This mini-review outlines the pathophysiology of these conditions as well as how to differentiate them.


Assuntos
Alcalose/diagnóstico , Síndrome de Bartter/diagnóstico , Biomarcadores/metabolismo , Glycyrrhiza/efeitos adversos , Hipopotassemia/diagnóstico , Aldosterona/metabolismo , Alcalose/etiologia , Alcalose/metabolismo , Síndrome de Bartter/complicações , Síndrome de Bartter/metabolismo , Diagnóstico Diferencial , Canais Epiteliais de Sódio/metabolismo , Humanos , Hipopotassemia/etiologia , Hipopotassemia/metabolismo , Túbulos Renais/metabolismo , Potássio/metabolismo , Sódio/metabolismo
18.
Crit Care Med ; 46(4): e318-e325, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29293148

RESUMO

OBJECTIVE: To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. DESIGN: Prospective observational animal study. SETTING: University research laboratory. SUBJECTS: Male Wistar rats. INTERVENTION: Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6-10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. MEASUREMENTS AND MAIN RESULTS: By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. CONCLUSIONS: Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism.


Assuntos
Injúria Renal Aguda/fisiopatologia , Mitocôndrias/metabolismo , Oxigênio/sangue , Sepse/fisiopatologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Testes de Função Renal , Túbulos Renais/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , NAD/metabolismo , Consumo de Oxigênio , Estudos Prospectivos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Circulação Renal
19.
Kidney Int ; 91(2): 315-323, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27780585

RESUMO

Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-ß and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease.


Assuntos
Adenosina/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Nucleotídeos de Purina/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Animais , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Nefropatias/fisiopatologia , Ligantes , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2X7/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
N Engl J Med ; 370(2): 129-38, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401050

RESUMO

BACKGROUND: In renal Fanconi's syndrome, dysfunction in proximal tubular cells leads to renal losses of water, electrolytes, and low-molecular-weight nutrients. For most types of isolated Fanconi's syndrome, the genetic cause and underlying defect remain unknown. METHODS: We clinically and genetically characterized members of a five-generation black family with isolated autosomal dominant Fanconi's syndrome. We performed genomewide linkage analysis, gene sequencing, biochemical and cell-biologic investigations of renal proximal tubular cells, studies in knockout mice, and functional evaluations of mitochondria. Urine was studied with the use of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. RESULTS: We linked the phenotype of this family's Fanconi's syndrome to a single locus on chromosome 3q27, where a heterozygous missense mutation in EHHADH segregated with the disease. The p.E3K mutation created a new mitochondrial targeting motif in the N-terminal portion of EHHADH, an enzyme that is involved in peroxisomal oxidation of fatty acids and is expressed in the proximal tubule. Immunocytofluorescence studies showed mistargeting of the mutant EHHADH to mitochondria. Studies of proximal tubular cells revealed impaired mitochondrial oxidative phosphorylation and defects in the transport of fluids and a glucose analogue across the epithelium. (1)H-NMR spectroscopy showed elevated levels of mitochondrial metabolites in urine from affected family members. Ehhadh knockout mice showed no abnormalities in renal tubular cells, a finding that indicates a dominant negative nature of the mutation rather than haploinsufficiency. CONCLUSIONS: Mistargeting of peroxisomal EHHADH disrupts mitochondrial metabolism and leads to renal Fanconi's syndrome; this indicates a central role of mitochondria in proximal tubular function. The dominant negative effect of the mistargeted protein adds to the spectrum of monogenic mechanisms of Fanconi's syndrome. (Funded by the European Commission Seventh Framework Programme and others.).


Assuntos
Síndrome de Fanconi/genética , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Enzima Bifuncional do Peroxissomo/genética , Sequência de Aminoácidos , Animais , População Negra , Cromossomos Humanos Par 3 , Modelos Animais de Doenças , Síndrome de Fanconi/etnologia , Feminino , Ligação Genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Linhagem , Enzima Bifuncional do Peroxissomo/química , Enzima Bifuncional do Peroxissomo/metabolismo , Fenótipo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa