Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Surg Today ; 53(9): 1100-1104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36790475

RESUMO

Due to the worldwide travel restrictions caused by the 2019 coronavirus disease pandemic, many universities and students lost opportunities to engage in international exchange over the past 2 years. Teleconferencing systems have thus been developed to compensate for severe travel restrictions. Kansai Medical University in Japan and Vilnius University in Lithuania have a collaborative research and academic relationship. The two universities have been conducting an online joint international surgery lecture series for the medical students of both universities. Fifteen lectures were given from October 2021 to May 2022. The lectures focused on gastrointestinal surgery, gastroenterology, radiology, pathology, genetics, laboratory medicine, and organ transplantation. A survey of the attendees indicated that they were generally interested in the content and satisfied with attending this lecture series. Our efforts were successful in providing Japanese and Lithuanian medical students with the opportunity to engage in international exchange through lectures held in each other's countries.


Assuntos
Estudantes de Medicina , Humanos , Inquéritos e Questionários , Universidades , Japão
2.
Medicina (Kaunas) ; 59(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374360

RESUMO

Background and Objectives: Only nine patients with interstitial de novo 8q22.2q22.3 microdeletions have been reported to date. The objective of this report is to present clinical features of a new patient with an 8q22.2q22.3 microdeletion, to compare her phenotype to other previously reported patients, and to further expand the phenotype associated with this microdeletion. Materials and Methods: We describe an 8½-year-old girl with developmental delay, congenital hip dysplasia, a bilateral foot deformity, bilateral congenital radioulnar synostosis, a congenital heart defect, and minor facial anomalies. Results: Chromosomal microarray analysis revealed a 4.9 Mb deletion in the 8q22.2q22.3 region. De novo origin was confirmed by real-time PCR analysis. Conclusions: Microdeletions in the 8q22.2q22.3 region are characterized by moderate to severe intellectual disability, seizures, distinct facial features and skeletal abnormalities. In addition to one already reported individual with an 8q22.2q22.3 microdeletion and unilateral radioulnar synostosis, this report of a child with bilateral radioulnar synostosis provides additional evidence, that radioulnar synostosis is not an incidental finding in individuals with an 8q22.2q22.3 microdeletion. Additional patients with similar microdeletions would be of a great importance for more accurate phenotypic description and further analysis of the genotypic-phenotypic relationship.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Sinostose , Feminino , Humanos , Deleção Cromossômica , Anormalidades Múltiplas/genética , Sinostose/genética , Deficiência Intelectual/genética , Fenótipo
3.
Medicina (Kaunas) ; 59(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512036

RESUMO

Background and Objectives: Heterozygous pathogenic variants in the MED13L gene cause impaired intellectual development and distinctive facial features with or without cardiac defects (MIM #616789). This complex neurodevelopmental disorder is characterised by various phenotypic features, including plagiocephaly, strabismus, clubfoot, poor speech, and developmental delay. The aim of this study was to evaluate the clinical significance and consequences of a novel heterozygous intragenic MED13L deletion in a proband with clinical features of a MED13L-related disorder through extensive clinical, molecular, and functional characterisation. Materials and Methods: Combined comparative genomic hybridisation and single-nucleotide polymorphism array (SNP-CGH) was used to identify the changes in the proband's gDNA sequence (DECIPHER #430183). Intragenic MED13L deletion was specified via quantitative polymerase chain reaction (qPCR) and Sanger sequencing of the proband's cDNA sample. Western blot and bioinformatics analyses were used to investigate the consequences of this copy number variant (CNV) at the protein level. CRISPR-Cas9 technology was used for a MED13L-gene-silencing experiment in a culture of the control individual's skin fibroblasts. After the MED13L-gene-editing experiment, subsequent functional fibroblast culture analyses were performed. Results: The analysis of the proband's cDNA sample allowed for specifying the regions of the breakpoints and identifying the heterozygous deletion that spanned exons 3 to 10 of MED13L, which has not been reported previously. In silico, the deletion was predicted to result in a truncated protein NP_056150.1:p.(Val104Glyfs*5), partly altering the Med13_N domain and losing the MedPIWI and Med13_C domains. After MED13L gene editing was performed, reduced cell viability; an accelerated aging process; and inhibition of the RB1, E2F1, and CCNC gene expression were found to exist. Conclusions: Based on these findings, heterozygous intragenic 12q24.21 deletion in the affected individual resulted in MED13L haploinsufficiency due to the premature termination of protein translation, therefore leading to MED13L haploinsufficiency syndrome.


Assuntos
Haploinsuficiência , Deficiência Intelectual , Humanos , Haploinsuficiência/genética , Deficiência Intelectual/genética , Fenótipo , DNA Complementar , Síndrome , Complexo Mediador/genética
4.
Medicina (Kaunas) ; 58(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36556938

RESUMO

Background: We report the clinical case of female patient with 46,XY difference of sexual development (DSD) and discuss the challenges in the differential diagnosis between complete gonadal dysgenesis (also called Swyer syndrome) and complete androgen insensitivity syndrome. Case Presentation: The patient's with primary amenorrhea gynaecological examination and magnetic resonance imaging (MRI) revealed the absence of the uterus and a very short vagina. Two sclerotic structures, similar to ovaries, were recognised bilaterally in the iliac regions. Hormonal assay tests revealed hypergonadotropic hypogonadism and the testosterone level was above normal. The karyotype was 46,XY and a diagnosis of Swyer syndrome was made. At the age of 41, the patient underwent a gynaecological review and after evaluating her tests and medical history, the previous diagnosis was questioned. Therefore, a molecular analysis of sex-determining region Y (SRY) and androgen receptor (AR) genes was made and the results instead led to a definite diagnosis of complete androgen insensitivity syndrome. Conclusions: The presented case illustrates that differentiating between complete gonadal dysgenesis and complete androgen insensitivity can be challenging. A well-established diagnosis is crucial because the risk of malignancy is different in those two syndromes, as well as the timing and importance of gonadectomy.


Assuntos
Síndrome de Resistência a Andrógenos , Disgenesia Gonadal 46 XY , Humanos , Masculino , Feminino , Síndrome de Resistência a Andrógenos/diagnóstico , Síndrome de Resistência a Andrógenos/genética , Ovário , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/genética , Útero , Desenvolvimento Sexual
5.
Medicina (Kaunas) ; 58(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35334527

RESUMO

Background and Objectives: The pathogenic variants of SLC9A6 are a known cause of a rare, X-linked neurological disorder called Christianson syndrome (CS). The main characteristics of CS are developmental delay, intellectual disability, and neurological findings. This study investigated the genetic basis and explored the molecular changes that led to CS in two male siblings presenting with intellectual disability, epilepsy, behavioural problems, gastrointestinal dysfunction, poor height, and weight gain. Materials and Methods: Next-generation sequencing of a tetrad was applied to identify the DNA changes and Sanger sequencing of proband's cDNA was used to evaluate the impact of a splice site variant on mRNA structure. Bioinformatical tools were used to investigate SLC9A6 protein structure changes. Results: Sequencing and bioinformatical analysis revealed a novel donor splice site variant (NC_000023.11(NM_001042537.1):c.899 + 1G > A) that leads to a frameshift and a premature stop codon. Protein structure modelling showed that the truncated protein is unlikely to form any functionally relevant SLC9A6 dimers. Conclusions: Molecular and bioinformatical analysis revealed the impact of a novel donor splice site variant in the SLC9A6 gene that leads to truncated and functionally disrupted protein causing the phenotype of CS in the affected individuals.


Assuntos
Epilepsia , Deficiência Intelectual , Microcefalia , Ataxia , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Lituânia , Masculino , Microcefalia/genética , Transtornos da Motilidade Ocular
6.
Medicina (Kaunas) ; 58(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363484

RESUMO

Background and Objectives: Pathogenic variants of PIGN are a known cause of multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1). Many affected individuals have clinical features overlapping with Fryns syndrome and are mainly characterised by developmental delay, congenital anomalies, hypotonia, seizures, and specific minor facial anomalies. This study investigates the clinical and molecular data of three individuals from two unrelated families, the clinical features of which were consistent with a diagnosis of MCAHS1. Materials and Methods: Next-generation sequencing (NGS) technology was used to identify the changes in the DNA sequence. Sanger sequencing of gDNA of probands and their parents was used for validation and segregation analysis. Bioinformatics tools were used to investigate the consequences of pathogenic or likely pathogenic PIGN variants at the protein sequence and structure level. Results: The analysis of NGS data and segregation analysis revealed a compound heterozygous NM_176787.5:c.[1942G>T];[1247_1251del] PIGN genotype in family 1 and NG_033144.1(NM_176787.5):c.[932T>G];[1674+1G>C] PIGN genotype in family 2. In silico, c.1942G>T (p.(Glu648Ter)), c.1247_1251del (p.(Glu416GlyfsTer22)), and c.1674+1G>C (p.(Glu525AspfsTer68)) variants are predicted to result in a premature termination codon that leads to truncated and functionally disrupted protein causing the phenotype of MCAHS1 in the affected individuals. Conclusions: PIGN-related disease represents a wide spectrum of phenotypic features, making clinical diagnosis inaccurate and complicated. The genetic testing of every individual with this phenotype provides new insights into the origin and development of the disease.


Assuntos
Deformidades Congênitas dos Membros , Hipotonia Muscular , Humanos , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Lituânia , Fosfotransferases/genética , Convulsões , Síndrome , Mutação , Linhagem
7.
BMC Endocr Disord ; 21(1): 71, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858404

RESUMO

BACKGROUND: Acrodysostosis is a rare hereditary disorder described as a primary bone dysplasia with or without hormonal resistance. Pathogenic variants in the PRKAR1A and PDE4D genes are known genetic causes of this condition. The latter gene variants are more frequently identified in patients with midfacial and nasal hypoplasia and neurological involvement. The aim of our study was to analyse and confirm a genetic cause of acrodysostosis in a male patient. CASE PRESENTATION: We report on a 29-year-old Lithuanian man diagnosed with acrodysostosis type 2. The characteristic phenotype includes specific skeletal abnormalities, facial dysostosis, mild intellectual disability and metabolic syndrome. Using patient's DNA extracted from peripheral blood sample, the novel, likely pathogenic, heterozygous de novo variant NM_001104631.2:c.581G > C was identified in the gene PDE4D via Sanger sequencing. This variant causes amino acid change (NP_001098101.1:p.(Arg194Pro)) in the functionally relevant upstream conserved region 1 domain of PDE4D. CONCLUSIONS: This report further expands the knowledge of the consequences of missense variants in PDE4D that affect the upstream conserved region 1 regulatory domain and indicates that pathogenic variants of the gene PDE4D play an important role in the pathogenesis mechanism of acrodysostosis type 2 without significant hormonal resistance.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Disostoses/diagnóstico por imagem , Disostoses/genética , Variação Genética/genética , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Adulto , Sequência de Bases , Humanos , Lituânia , Masculino , Mutação de Sentido Incorreto/genética
8.
BMC Musculoskelet Disord ; 22(1): 1020, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863162

RESUMO

BACKGROUND: Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1), also known as calpainopathy, is a genetically heterogeneous disorder characterised by progression of muscle weakness. Homozygous or compound heterozygous variants in the CAPN3 gene are known genetic causes of this condition. The aim of this study was to confirm the molecular consequences of the CAPN3 variant NG_008660.1(NM_000070.3):c.1746-20C > G of an individual with suspected LGMDR1 by extensive complementary DNA (cDNA) analysis. CASE PRESENTATION: In the present study, we report on a male with proximal muscular weakness in his lower limbs. Compound heterozygous NM_000070.3:c.598_612del and NG_008660.1(NM_000070.3):c.1746-20C > G genotype was detected on the CAPN3 gene by targeted next-generation sequencing (NGS). To confirm the pathogenicity of the variant c.1746-20C > G, we conducted genetic analysis based on Sanger sequencing of the proband's cDNA sample. The results revealed that this splicing variant disrupts the original 3' splice site on intron 13, thus leading to the skipping of the DNA fragment involving exon 14 and possibly exon 15. However, the lack of exon 15 in the CAPN3 isoforms present in a blood sample was explained by cell-specific alternative splicing rather than an aberrant splicing mechanism. In silico the c.1746-20C > G splicing variant consequently resulted in frameshift and formation of a premature termination codon (NP_000061.1:p.(Glu582Aspfs*62)). CONCLUSIONS: Based on the results of our study and the literature we reviewed, both c.598_612del and c.1746-20C > G variants are pathogenic and together cause LGMDR1. Therefore, extensive mRNA and/or cDNA analysis of splicing variants is critical to understand the pathogenesis of the disease.


Assuntos
Calpaína , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Homozigoto , Humanos , Masculino , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação
9.
Medicina (Kaunas) ; 57(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34357002

RESUMO

Congenital long QT syndrome (LQTS) is a hereditary ion channelopathy associated with ventricular arrhythmia and sudden cardiac death starting from young age due to prolonged cardiac repolarization, which is represented by QT interval changes in electrocardiogram (ECG). Mutations in human ether-à-go-go related gene (KCNH2 (7q36.1), formerly named hERG) are responsible for Long QT syndrome type 2 (LQT2). LQT2 is the second most common type of LQTS. A resuscitated 31-year-old male with the diagnosis of LQT2 and his family are described. Sequencing analysis of their genomic DNA was performed. Amino acid alteration p.(Ser631Pro) in KCNH2 gene was found. This variant had not been previously described in literature, and it was found in three nuclear family members with different clinical course of the disease. Better understanding of genetic alterations and genotype-phenotype correlations aids in risk stratification and more effective management of these patients, especially when employing a trigger-specific approach to risk-assessment and individually tailored therapy.


Assuntos
Parada Cardíaca , Síndrome do QT Longo , Adulto , Morte Súbita Cardíaca/etiologia , Canal de Potássio ERG1/genética , Canais de Potássio Éter-A-Go-Go/genética , Parada Cardíaca/genética , Humanos , Síndrome do QT Longo/complicações , Síndrome do QT Longo/genética , Masculino , Mutação
10.
Medicina (Kaunas) ; 57(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684072

RESUMO

Background and Objectives: The main reason for Newborn screening (NBS) for congenital adrenal hyperplasia (CAH) is to prevent adrenal insufficiency that can lead to life-threatening conditions. On the other hand, screening programs are not always sensitive and effective enough to detect the disease. We aimed to evaluate impact of the national NBS on the clinical presentation of patients with CAH in Lithuania. Materials and Methods: A retrospective study was performed on data of 88 patients with CAH from 1989 to 2020. Patients with confirmed CAH were divided into two groups: (1) 75 patients diagnosed before NBS: 52 cases with salt-wasting (SW), 21 with simple virilising (SV) and two with non-classical (NC) form; (2) 13 patients diagnosed with NBS: 12 cases with SW and 1 case with SV form. For the evaluation of NBS effectiveness, data of only male infants with salt-wasting CAH were analysed (n = 36, 25 unscreened and nine screened). Data on gestational age, birth weight, weight, symptoms, and laboratory tests (serum potassium and sodium levels) on the day of diagnosis, were analysed. Results: A total of 158,486 neonates were screened for CAH from 2015 to 2020 in Lithuania and CAH was confirmed in 13 patients (12 SW, one-SV form), no false negative cases were found. The sensitivity and specificity of NBS program for classical CAH forms were 100%; however, positive predictive value was only 4%. There were no significant differences between unscreened and screened male infant groups in terms of age at diagnosis, serum potassium, and serum sodium levels. Significant differences were found in weight at diagnosis between the groups (-1.67 ± 1.12 SDS versus 0.046 ± 1.01 SDS of unscreened and screened patients respectively, p = 0.001). Conclusions: The sensitivity and specificity of NBS for CAH program were 100%, but positive predictive value-only 4%. Weight loss was significantly lower and the weight SDS at diagnosis was significantly higher in the group of screened patients.


Assuntos
Hiperplasia Suprarrenal Congênita , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/epidemiologia , Peso ao Nascer , Humanos , Lactente , Recém-Nascido , Masculino , Triagem Neonatal , Estudos Retrospectivos , Sensibilidade e Especificidade
11.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235485

RESUMO

Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease.


Assuntos
Ceruloplasmina/deficiência , Ceruloplasmina/genética , Distúrbios do Metabolismo do Ferro/genética , Doenças Neurodegenerativas/genética , Adulto , Idoso , Diagnóstico Precoce , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/patologia , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/patologia
12.
J Cell Biochem ; 120(5): 8129-8143, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30485506

RESUMO

Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cell therapy and regenerative medicine. In this study, the potential of DNA methyltransferases (DNMT) inhibitors Decitabine, Zebularine, RG108 alone or combined with Zebularine and p53 inhibitor Pifithrin-α to induce cardiomyogenic differentiation of AF-MSCs was investigated. Differentiation into cardiomyocyte-like cells initiation was indicated with all agents by changes in the cell phenotype, upregulation of the relative expression of the main cardiac genes (NKX2-5, TNNT2, MYH6, and DES) as well as of cardiac ion channels genes (sodium, calcium, and potassium) as determined by reverse-transcription quantitative polymerase chain reaction and the increase in Connexin43 levels as detected from Western blot and immunofluorescence data. Cellular energetics and mitochondrial function in induced cells were assessed using Seahorse analyzer and revealed the initiation of AF-MSCs metabolic transformation into cardiomyocyte-like cells. All used inducers were nontoxic to AF-MSCs, arrested cell cycle at the G0/G1 phase, and upregulated p53 and p21 expression. The relative expression of miR-34a and miR-145 that are related to cell cycle regulation was also observed. Furthermore, the evaluated levels of chromatin remodeling proteins enhancer of zeste homolog 2, suppressor of zeste 12 protein homolog, DNMT1, histone deacetylase 1 (HDAC1), HDAC2, and heterochromatin protein 1α, as well as the rate of activating histone modifications, exhibited rearrangements of chromatin after the induction of cardiomyogenic differentiation. In conclusion, we demonstrated that all explored DNMT and p53 inhibitors initiated cardiomyogenesis-related alterations in AF-MSCs through rather similar mechanisms but to a different extent providing useful insights for the future research and potential applications of AF-MSCs.

13.
BMC Med Genet ; 20(1): 127, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315586

RESUMO

BACKGROUND: CHARGE syndrome (MIM# 214800)-which is characterised by a number of congenital anomalies including coloboma, ear anomalies, deafness, facial anomalies, heart defects, atresia choanae, genital hypoplasia, growth retardation, and developmental delay-is caused by a heterozygous variant in the CHD7 (MIM# 608892) gene located on chromosome 8q12. We report the identification of a novel c.5535-1G > A variant in CHD7 and provide the evaluation of its effect on pre-mRNA splicing. CASE PRESENTATION: In this study, we report on a female presenting features of CHARGE syndrome. A novel heterozygous CHD7 variant c.5535-1G > A located in the acceptor splice site of intron 26 was identified in the proband's DNA sample after analysis of whole exome sequencing data. In silico predictions indicating that the variant is probably pathogenic by affecting pre-mRNA splicing were verified by genetic analysis based on reverse transcription of the patient's RNA followed by PCR amplifications performed on synthesised cDNA and Sanger sequencing. Sanger sequencing of cDNA revealed that the c.5535-1G > A variant disrupts the original acceptor splice site and activates a cryptic splice site only one nucleotide downstream of the pathogenic variant site. This change causes the omission of the first nucleotide of exon 27, leading to a frameshift in the mRNA of the CHD7 gene. Our results suggest that the alteration induces the premature truncation of the CHD7 protein (UniProtKB: Q9P2D1), thus resulting in CHARGE syndrome. CONCLUSION: Genetic analysis of novel splice site variant underlines its importance for studying the pathogenic splicing mechanism as well as for confirming a diagnosis.


Assuntos
Síndrome CHARGE/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Sítios de Splice de RNA , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Síndrome CHARGE/diagnóstico por imagem , Síndrome CHARGE/fisiopatologia , Feminino , Mutação da Fase de Leitura , Estudos de Associação Genética , Heterozigoto , Humanos , Íntrons , Mutação , Splicing de RNA , RNA Mensageiro , Alinhamento de Sequência , Osso Temporal/diagnóstico por imagem , Sequenciamento do Exoma
14.
Cell Biol Int ; 43(3): 299-312, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30635962

RESUMO

Amniotic fluid-derived mesenchymal stem cells (AF-MSCs) are autologous to the fetus and represent a potential alternative source for the regenerative medicine and treatment of perinatal disorders. To date, AF-MSCs differentiation capacity to non-mesodermal lineages and epigenetic regulation are still poorly characterized. The present study investigated the differentiation potential of AF-MSCs toward neural-like cells in comparison to the mesodermal myogenic lineage and assessed epigenetic factors involved in tissue-specific differentiation. Myogenic and neural differentiation assays were performed by the incubation with specific induction media. Typical MSCs markers were determined by flow cytometry, the expression of lineage-specific genes, microRNAs and chromatin modifying proteins were examined by RT-qPCR and Western blot, respectively. AF-MSCs of normal and fetus-affected gestations had similar stem cells characteristics and two-lineage potential, as characterized by cell morphology and the expression of myogenic and neural markers. Two-lineage differentiation process was associated with the down-regulation of miR-17 and miR-21, the up-regulation of miR-34a, miR-146a and DNMT3a/DNMT3b along with the gradual decrease in the levels of DNMT1, HDAC1, active marks of chromatin (H4hyperAc, H3K9ac, H3K4me3) and the repressive H3K9me3 mark. Differentiation was accompanied by the down-regulation of PRC1/2 proteins (BMI1/SUZ12, EZH2) and the retention of the repressive H3K27me3 mark. We report that both AF-MSCs of normal and fetus-affected gestations possess differentiation capacity toward myogenic and neural lineages through rather similar epigenetic mechanisms that may provide potential applications for further investigation of the molecular basis of prenatal diseases and for the future autologous therapy.


Assuntos
Líquido Amniótico/citologia , Diferenciação Celular/genética , Epigênese Genética , Feto/citologia , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular/genética , Neurônios/citologia , Linhagem da Célula , Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Processamento de Proteína Pós-Traducional
15.
Nord J Psychiatry ; 73(1): 31-35, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30661435

RESUMO

BACKGROUND: CYP450 system gene CYP2D6 polymorphisms have been associated with an altered response to psychotropic drugs. While there exists interindividual and interethnic differences of clinical significance, there is no data concerning the Lithuanian population. AIMS: To determine the distribution of CYP2D6 alleles and predicted phenotype in the Lithuanian population, compare it to other Europeans and find the differences between patients with affective disorders and the healthy population. METHODS: Our study sample consisted of 179 subjects that included 104 healthy volunteers and 75 patients with clinical diagnosis of affective disorders according to ICD-10AM classification, treated in hospital settings. DNA samples were taken from the blood and alleles of the CYP2D6 gene were determined for each participant. Frequencies were compared to other Europeans. RESULTS: The frequency of the most common alleles *1 and *2 was 45.0% and 28.8% accordingly. Dysfunctional *5 (1 vs. 30, p < .002) allele was less frequent in Lithuania inhabitants than previously established in other Europeans. There were no polymorphisms of the CYP2D6 gene that could be associated with changes in drug metabolism in the patients. The functional CYP2D6 *2 allele was more prevalent in the control group, while the non functional CYP2D6 *4 allele was more prevalent in the patient group (p < .05 for both cases). CONCLUSION: The genetic makeup of Lithuanians was generally comparable to other Europeans, but fewer Lithuanians had non-functional *5 allele. More patients had non-functional alleles. Study findings contradict previous results from other countries, where CYP2D6 gene polymorphism was associated with treatment outcomes.


Assuntos
Citocromo P-450 CYP2D6/genética , Frequência do Gene , Transtornos do Humor/genética , Polimorfismo Genético , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Antidepressivos/uso terapêutico , Estudos de Casos e Controles , Europa (Continente) , Feminino , Genótipo , Humanos , Lituânia , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/terapia , Fenótipo , Adulto Jovem
16.
Cytogenet Genome Res ; 154(1): 6-11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29421787

RESUMO

Many studies have shown that molecular karyotyping is an effective diagnostic tool in individuals with developmental delay/intellectual disability. We report on a de novo interstitial 1q22q23.1 microdeletion, 1.6 Mb in size, detected in a patient with short stature, microcephaly, hypoplastic corpus callosum, cleft palate, minor facial anomalies, congenital heart defect, camptodactyly of the 4-5th fingers, and intellectual disability. Chromosomal microarray analysis revealed a 1.6-Mb deletion in the 1q22q23.1 region, arr[GRCh37] 1q22q23.1(155630752_157193893)×1. Real-time PCR analysis confirmed its de novo origin. The deleted region encompasses 50 protein-coding genes, including the morbid genes APOA1BP, ARHGEF2, LAMTOR2, LMNA, NTRK1, PRCC, RIT1, SEMA4A, and YY1AP1. Although the unique phenotype observed in our patient can arise from the haploinsufficiency of the dosage-sensitive LMNA gene, the dosage imbalance of other genes implicated in the rearrangement could also contribute to the phenotype. Further studies are required for the delineation of the phenotype associated with this rare chromosomal alteration and elucidation of the critical genes for manifestation of the specific clinical features.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 1/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Deleção de Sequência , Criança , Feminino , Humanos , Cariotipagem , Lamina Tipo A/genética
17.
Metab Brain Dis ; 33(6): 1781-1786, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30006695

RESUMO

Many inborn errors of metabolism may present with epilepsy or seizures, however, current scope of these diseases is unknown. Due to available precision medicine approaches in many inborn errors of metabolism and sophisticated traditional diagnostics, this group of disorders is of special relevance to clinicians. Besides, as current treatment is challenging and unsuccessful in more than 30% of all epilepsy patients, these diseases may provide valuable models for ictogenesis and epileptogenesis studies and potentially pave the ways to identification of novel treatments. The aim of this study was to elucidate genetic architecture of inborn errors of metabolism involving epilepsy or seizures and to evaluate their diagnostic approaches. After extensive search, 880 human genes were identified with a considerable part, 373 genes (42%), associated with inborn errors of metabolism. The most numerous group comprised disorders of energy metabolism (115, 31% of all inborn errors of metabolism). A substantial number of these diseases (26%, 97/373) have established specific treatments, therefore timely diagnosis comes as an obligation. Highly heterogenous, overlapping and non-specific phenotypes in most of inborn errors of metabolism presenting with epilepsy or seizures usually preclude phenotype-driven diagnostics. Besides, as traditional diagnostics involves a range of specialized metabolic tests with low diagnostic yields and is generally inefficient and lengthy, next-generation sequencing-based methods were proposed as a cost-efficient one-step way to shorten "diagnostic odyssey". Extensive list of 373 epilepsy- or seizures-associated inborn errors of metabolism genes may be of value in development of gene panels and as a tool for variants' filtration.


Assuntos
Epilepsia/etiologia , Erros Inatos do Metabolismo/complicações , Convulsões/etiologia , Epilepsia/metabolismo , Humanos , Erros Inatos do Metabolismo/metabolismo , Convulsões/metabolismo
18.
J Cell Biochem ; 118(11): 3744-3755, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28379622

RESUMO

Human amniotic fluid (AF)-derived mesenchymal stem cells (MSCs) sharing embryonic and adult stem cells characteristics are interesting by their multipotency and the usage for regenerative medicine. However, the usefulness of these cells for revealing the fetal diseases still needs to be assessed. Here, we have analyzed the epigenetic environment in terms of histone modifications in cultures of MSCs derived from AF of normal pregnancies and those with fetal abnormalities. The comparison of MSCs samples from AF of normal pregnancies (N) and fetus-affected (P) revealed two distinct cultures by their proliferation potential (P I and P II). Cell populations from N and P I samples had similar growth characteristics and exhibited quite similar cell surface (CD44, CD90, CD105) and stemness markers (Oct4, Nanog, Sox2, Rex1) profile that was distinct in slower growing and faster senescent P II cultures. Those differences were associated with changes in 5-Cyt DNA methylation and alterations in the expression levels of chromatin modifiers (DNMT1, HDAC1/2), activating (H4ac, H3K4me3), and repressive (H3K9me2/me3, H3K27me3) histone marks. MSCs isolated from AF with the genetic or multifactorial fetal diseases (P II samples) were enriched with repressive histone marks and H4K16ac, H3K9ac, H3K14ac modifications. This study indicates that differential epigenetic environment reflects a state of AF-MSCs dependently on their growth, phenotype, and stemness characteristics suggesting a way for better understanding of epigenetic regulatory mechanisms in AF-MSCs cultures in normal and diseased gestation conditions. J. Cell. Biochem. 118: 3744-3755, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Líquido Amniótico/metabolismo , Feto/metabolismo , Histonas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Segundo Trimestre da Gravidez/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Líquido Amniótico/citologia , Células Cultivadas , Feminino , Feto/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Gravidez
19.
Cytogenet Genome Res ; 151(1): 5-9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28226328

RESUMO

Axenfeld-Rieger syndrome (ARS) is a clinically and genetically heterogeneous group of autosomal dominantly inherited malformations that predominantly affect the eye but are also associated with craniofacial dysmorphism and dental abnormalities. A broad spectrum of genetic alterations involving PITX2 and FOXC1 lead to ARS. We report on a 4-year-old girl with clinical features of ARS and developmental delay due to a de novo apparently balanced pericentric inversion in chromosome 4. This report emphasizes that complementary investigations are necessary to precisely characterize chromosomal rearrangements. Elucidation of the exact genetic cause of ARS is important for comprehensive genetic counseling of the family members and for better patient management.


Assuntos
Segmento Anterior do Olho/anormalidades , Deleção Cromossômica , Inversão Cromossômica , Cromossomos Humanos Par 4/genética , Deficiências do Desenvolvimento/genética , Anormalidades do Olho/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Pré-Escolar , Pontos de Quebra do Cromossomo , Hibridização Genômica Comparativa , Oftalmopatias Hereditárias , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Mutação , Proteína Homeobox PITX2
20.
Medicina (Kaunas) ; 53(6): 357-364, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29482879

RESUMO

Ultrasound imaging in obstetrics and gynecology dates back to 1958 when The Lancet published the first article about the use of ultrasonography for fetal and gynecological assessments. It is now almost inconceivable, 60 years later, to think of effective performance in obstetrics and gynecology without the variety of ultrasound, for example, real time imaging, power and color Doppler, 3D/4D ultrasonography, etc. Such examinations facilitate the assessment of intrauterine fetal growth and development during pregnancy, provide alerts about the risk of pre-eclampsia and preterm birth, help identify anatomic reasons for infertility, diagnose ectopic pregnancies, uterine, ovary and tubal pathology. Ultrasonography is also used for diagnostic and treatment procedures during pregnancy or for the treatment of infertility. This article is an overview of the development of fetal ultrasound, the methodology and interpretation of ultrasound in the assessment of intrauterine fetal growth and fetal biometry standards both worldwide and in Lithuania.


Assuntos
Biometria , Feto , Ultrassonografia Pré-Natal , Feminino , Feto/anatomia & histologia , Feto/diagnóstico por imagem , Humanos , Lituânia , Obstetrícia , Pré-Eclâmpsia , Gravidez , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa