Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(1): 50-63.e12, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31923399

RESUMO

Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.


Assuntos
Imunidade nas Mucosas/imunologia , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Animais , Citocinas/imunologia , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Células Epiteliais/imunologia , Feminino , Células Caliciformes/imunologia , Interleucina-18/biossíntese , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Ratos , Ratos Sprague-Dawley , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia
3.
Gastroenterology ; 159(1): 183-199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179094

RESUMO

BACKGROUND & AIMS: Intestinal epithelial homeostasis depends on a tightly regulated balance between intestinal epithelial cell (IEC) death and proliferation. While the disruption of several IEC death regulating factors result in intestinal inflammation, the loss of the anti-apoptotic BCL2 family members BCL2 and BCL2L1 has no effect on intestinal homeostasis in mice. We investigated the functions of the antiapoptotic protein MCL1, another member of the BCL2 family, in intestinal homeostasis in mice. METHODS: We generated mice with IEC-specific disruption of Mcl1 (Mcl1ΔIEC mice) or tamoxifen-inducible IEC-specific disruption of Mcl1 (i-Mcl1ΔIEC mice); these mice and mice with full-length Mcl1 (controls) were raised under normal or germ-free conditions. Mice were analyzed by endoscopy and for intestinal epithelial barrier permeability. Intestinal tissues were analyzed by histology, in situ hybridization, proliferation assays, and immunoblots. Levels of calprotectin, a marker of intestinal inflammation, were measured in intestinal tissues and feces. RESULTS: Mcl1ΔIEC mice spontaneously developed apoptotic enterocolopathy, characterized by increased IEC apoptosis, hyperproliferative crypts, epithelial barrier dysfunction, and chronic inflammation. Loss of MCL1 retained intestinal crypts in a hyperproliferated state and prevented the differentiation of intestinal stem cells. Proliferation of intestinal stem cells in MCL1-deficient mice required WNT signaling and was associated with DNA damage accumulation. By 1 year of age, Mcl1ΔIEC mice developed intestinal tumors with morphologic and genetic features of human adenomas and carcinomas. Germ-free housing of Mcl1ΔIEC mice reduced markers of microbiota-induced intestinal inflammation but not tumor development. CONCLUSION: The antiapoptotic protein MCL1, a member of the BCL2 family, is required for maintenance of intestinal homeostasis and prevention of carcinogenesis in mice. Loss of MCL1 results in development of intestinal carcinomas, even under germ-free conditions, and therefore does not involve microbe-induced chronic inflammation. Mcl1ΔIEC mice might be used to study apoptotic enterocolopathy and inflammatory bowel diseases.


Assuntos
Carcinoma/patologia , Mucosa Intestinal/patologia , Neoplasias Intestinais/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Apoptose/genética , Apoptose/imunologia , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinoma/diagnóstico , Carcinoma/genética , Modelos Animais de Doenças , Endoscopia , Células Epiteliais/patologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/diagnóstico por imagem , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/genética , Camundongos , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética
4.
Nat Commun ; 12(1): 1368, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649334

RESUMO

The homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/ß-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic ß-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of ß-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with ß-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune ß-catenin's transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant "villisation" of intestinal crypts. Our data suggest that IESC-specific Wnt/ß-catenin output requires selective modulation of gene expression by transcriptional co-factors.


Assuntos
Mucosa Intestinal/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , beta Catenina/química , beta Catenina/metabolismo , Algoritmos , Animais , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Homeostase , Hiperplasia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Mutação/genética , Organoides/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
5.
mBio ; 10(2)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890606

RESUMO

The gastric bacterium Helicobacter pylori causes a persistent infection that is directly responsible for gastric ulcers and gastric cancer in some patients and protective against allergic and other immunological disorders in others. The two outcomes of the Helicobacter-host interaction can be modeled in mice that are infected as immunocompetent adults and as neonates, respectively. Here, we have investigated the contribution of the Helicobacter immunomodulator VacA to H. pylori-specific local and systemic immune responses in both models. We found that neonatally infected mice are colonized at higher levels than mice infected as adults and fail to generate effector T-cell responses to the bacteria; rather, T-cell responses in neonatally infected mice are skewed toward Foxp3-positive (Foxp3+) regulatory T cells that are neuropilin negative and express RORγt. We found these peripherally induced regulatory T cells (pTregs) to be enriched, in a VacA-dependent manner, not only in the gastric mucosa but also in the lungs of infected mice. Pulmonary pTreg accumulation was observed in mice that have been infected neonatally with wild-type H. pylori but not in mice that have been infected as adults or mice infected with a VacA null mutant. Finally, we traced VacA to gastric lamina propria myeloid cells and show that it suppressed interleukin-23 (IL-23) expression by dendritic cells and induced IL-10 and TGF-ß expression in macrophages. Taken together, the results are consistent with the idea that H. pylori creates a tolerogenic environment through its immunomodulator VacA, which skews T-cell responses toward Tregs, favors H. pylori persistence, and affects immunity at distant sites.IMPORTANCEHelicobacter pylori has coexisted with humans for at least 60.000 years and has evolved persistence strategies that allow it to evade host immunity and colonize its host for life. The VacA protein is expressed by all H. pylori strains and is required for high-level persistent infection in experimental mouse models. Here, we show that VacA targets myeloid cells in the gastric mucosa to create a tolerogenic environment that facilitates regulatory T-cell differentiation, while suppressing effector T-cell priming and functionality. Tregs that are induced in the periphery during H. pylori infection can be found not only in the stomach but also in the lungs of infected mice, where they are likely to affect immune responses to allergens.


Assuntos
Proteínas de Bactérias/metabolismo , Diferenciação Celular , Mucosa Gástrica/patologia , Helicobacter pylori/imunologia , Mucosa/patologia , Células Mieloides/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia , Animais , Células Dendríticas/imunologia , Modelos Animais de Doenças , Infecções por Helicobacter/patologia , Infecções por Helicobacter/fisiopatologia , Helicobacter pylori/metabolismo , Evasão da Resposta Imune , Interleucina-10/metabolismo , Interleucina-23/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa