Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 32(5): 535-547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403152

RESUMO

OBJECTIVE: The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD: Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS: In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION: Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY: All data are available in the main text or the supplementary materials.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite do Quadril , Humanos , Osteoblastos , Osteócitos
2.
Bone ; 182: 117068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458304

RESUMO

The high occurrence of distal fibula fractures among older women suggests a potential link to impaired bone health. Here we used a multiscale imaging approach to investigate the microarchitecture, mineralization, and biomechanics of the human distal fibula in relation to age and sex. Micro-computed tomography was performed to analyze the local volumetric bone mineral density and various microarchitectural parameters of the trabecular and the cortical compartment. Bone mineral density distribution and osteocyte lacunar parameters were quantified using quantitative backscattered electron imaging in periosteal, endocortical, and trabecular regions. Additionally, cortical hardness and Young's modulus were assessed by nanoindentation. While cortical porosity strongly increased with age independent of sex, trabecular microarchitecture remained stable. Notably, nearly half of the specimens showed non-bony hypermineralized tissue located at the periosteum, similar to that previously detected in the femoral neck, with no consistent association with advanced age. Independent of this finding, cortical and trabecular mineralization, i.e., mean calcium content, as well as endocortical tissue hardness increased with age in males but not females. Importantly, we also observed mineralized osteocyte lacunae that increased with age specifically in females. In conclusion, our results indicate that skeletal aging of the distal fibula is signified not only by pronounced cortical porosity but also by an increase in mineralized osteocyte lacunae in females. These findings may provide an explanation for the increased occurrence of ankle fractures in older women.


Assuntos
Calcinose , Fraturas Ósseas , Masculino , Humanos , Feminino , Idoso , Microtomografia por Raio-X , Fíbula/diagnóstico por imagem , Porosidade , Osteócitos , Densidade Óssea , Envelhecimento
3.
J Bone Miner Res ; 39(7): 1025-1041, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38722812

RESUMO

Skeletal growth, modeling, and remodeling are regulated by various molecules, one of them being the recently identified osteoanabolic factor WNT1. We have previously reported that WNT1 transcriptionally activates the expression of Omd, encoding Osteomodulin (OMD), in a murine mesenchymal cell line, which potentially explained the skeletal fragility of mice with mutational WNT1 inactivation, since OMD has been shown to regulate type I collagen fibril formation in vitro. In this study we confirmed the strong induction of Omd expression in a genome-wide expression analysis of transfected cells, and we obtained further evidence for Omd being a direct target gene of WNT1. To assess the in vivo relevance of this regulation, we crossed Omd-deficient mice with a mouse line harboring an inducible, osteoblast-specific Wnt1 transgene. After induction of Wnt1 expression for 1 or 3 weeks, the osteoanabolic potency of WNT1 was not impaired despite the Omd deficiency. Since current knowledge regarding the in vivo physiological function of OMD is limited, we next focused on skeletal phenotyping of wild-type and Omd-deficient littermates, in the absence of a Wnt1 transgene. Here we did not observe an impact of Omd deficiency on trabecular bone parameters by histomorphometry and µCT either. Importantly, however, male and female Omd-deficient mice at the ages of 12 and 24 weeks displayed a slender bone phenotype with significantly smaller long bones in the transversal dimension, while the longitudinal bone growth remained unaffected. Although mechanical testing revealed no significant changes explained by impaired bone material properties, atomic force microscopy of the femoral bone surface of Omd-deficient mice revealed moderate changes at the nanostructural level, indicating altered regulation of collagen fibril formation and aggregation. Taken together, our data demonstrate that, although OMD is dispensable for the osteoanabolic effect of WNT1, its deficiency in mice specifically modulates transversal cortical bone morphology.


We explored the physiological relevance of the protein Osteomodulin (OMD) that we previously found to be induced by the osteoanabolic molecule WNT1. While other studies have shown that OMD is involved in the regulation of collagen fibril formation in vitro, its function in vivo has not been investigated. We confirmed that OMD is directly regulated by WNT1 but surprisingly, when we bred mice lacking OMD with mice engineered to highly express WNT1, we found that the osteoanabolic effect of WNT1 was unaffected by the absence of OMD. Interestingly, mice lacking OMD did show differences in the shape of their bones, particularly in their width, despite no significant changes in bone density or length. Investigation of the bone matrix of mice lacking OMD at the nanostructural level indicated moderate differences in the organization of collagen fibrils. This study provided further insights into the effect of WNT1 on bone metabolism and highlighted a specific function of OMD in skeletal morphology.


Assuntos
Osso Cortical , Proteína Wnt1 , Animais , Osso Cortical/metabolismo , Osso Cortical/patologia , Osso Cortical/diagnóstico por imagem , Camundongos , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Tamanho do Órgão , Feminino , Masculino , Osteoblastos/metabolismo , Osteoblastos/patologia , Regulação da Expressão Gênica , Microtomografia por Raio-X
4.
Bone Res ; 12(1): 12, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395992

RESUMO

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Animais , Humanos , Camundongos , Cartilagem Articular/patologia , Condrócitos , Canais Iônicos/genética , Osteoartrite/genética , Osteogênese/genética , Osteófito/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa