Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 39(5): 836-846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477399

RESUMO

BACKGROUND: Diffusion-weighted magnetic resonance imaging (dMRI) examines tissue microstructure integrity in vivo. Prior dementia with Lewy bodies (DLB) diffusion tensor imaging studies yielded mixed results. OBJECTIVE: We employed free-water (FW) imaging to assess DLB progression and correlate with clinical decline in DLB. METHODS: Baseline and follow-up MRIs were obtained at 12 and/or 24 months for 27 individuals with DLB or mild cognitive impairment with Lewy bodies (MCI-LB). FW was analyzed using the Mayo Clinic Adult Lifespan Template. Primary outcomes were FW differences between baseline and 12 or 24 months. To compare FW change longitudinally, we included 20 cognitively unimpaired individuals from the Alzheimer's Disease Neuroimaging Initiative. RESULTS: We followed 23 participants to 12 months and 16 participants to 24 months. Both groups had worsening in Montreal Cognitive Assessment (MoCA) and Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores. We found significant FW increases at both time points compared to baseline in the insula, amygdala, posterior cingulum, parahippocampal, entorhinal, supramarginal, fusiform, retrosplenial, and Rolandic operculum regions. At 24 months, we found more widespread microstructural changes in regions implicated in visuospatial processing, motor, and cholinergic functions. Between-group analyses (DLB vs. controls) confirmed significant FW changes over 24 months in most of these regions. FW changes were associated with longitudinal worsening of MDS-UPDRS and MoCA scores. CONCLUSIONS: FW increased in gray and white matter regions in DLB, likely due to neurodegenerative pathology associated with disease progression. FW change was associated with clinical decline. The findings support dMRI as a promising tool to track disease progression in DLB. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Progressão da Doença , Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologia , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Estudos Longitudinais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Água , Imagem de Tensor de Difusão/métodos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
2.
Alzheimers Dement ; 20(4): 2830-2842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441274

RESUMO

INTRODUCTION: Magnetic resonance imaging (MRI) biomarkers are needed for indexing early biological stages of Alzheimer's disease (AD), such as plasma amyloid-ß (Aß42/40) positivity in Aß positron emission tomography (PET) negative individuals. METHODS: Diffusion free-water (FW) MRI was acquired in individuals with normal cognition (NC) and mild cognitive impairment (MCI) with Aß plasma-/PET- (NC = 22, MCI = 60), plasma+/PET- (NC = 5, MCI = 20), and plasma+/PET+ (AD dementia = 21) biomarker status. Gray and white matter FW and fractional anisotropy (FAt) were compared cross-sectionally and the relationships between imaging, plasma and PET biomarkers were assessed. RESULTS: Plasma+/PET- demonstrated increased FW (24 regions) and decreased FAt (66 regions) compared to plasma-/PET-. FW (16 regions) and FAt (51 regions) were increased in plasma+/PET+ compared to plasma+/PET-. Composite brain FW correlated with plasma Aß42/40 and p-tau181. DISCUSSION: FW imaging changes distinguish plasma Aß42/40 positive and negative groups, independent of group differences in cognitive status, Aß PET status, and other plasma biomarkers (i.e., t-tau, p-tau181, glial fibrillary acidic protein, neurofilament light). HIGHLIGHTS: Plasma Aß42/40 positivity is associated with brain microstructure decline. Plasma+/PET- demonstrated increased FW in 24 total GM and WM regions. Plasma+/PET- demonstrated decreased FAt in 66 total GM and WM regions. Whole-brain FW correlated with plasma Aß42/40 and p-tau181 measures. Plasma+/PET- demonstrated decreased cortical volume and thickness.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/metabolismo , Imagem de Difusão por Ressonância Magnética , Biomarcadores , Proteínas tau
3.
Alzheimers Dement ; 20(1): 437-446, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37671801

RESUMO

INTRODUCTION: Alzheimer's disease studies often lack ethnic diversity. METHODS: We evaluated associations between plasma biomarkers commonly studied in Alzheimer's (p-tau181, GFAP, and NfL), clinical diagnosis (clinically normal, amnestic MCI, amnestic dementia, or non-amnestic MCI/dementia), and Aß-PET in Hispanic and non-Hispanic older adults. Hispanics were predominantly of Cuban or South American ancestry. RESULTS: Three-hundred seventy nine participants underwent blood draw (71.9 ± 7.8 years old, 60.2% female, 57% Hispanic of which 88% were Cuban or South American) and 240 completed Aß-PET. P-tau181 was higher in amnestic MCI (p = 0.004, d = 0.53) and dementia (p < 0.001, d = 0.97) than in clinically normal participants and discriminated Aß-PET[+] and Aß-PET[-] (AUC = 0.86). P-tau181 outperformed GFAP and NfL. There were no significant interactions with ethnicity. Among amnestic MCI, Hispanics had lower odds of elevated p-tau181 than non-Hispanic (OR = 0.41, p = 0.006). DISCUSSION: Plasma p-tau181 informs etiological diagnosis of cognitively impaired Hispanic and non-Hispanic older adults. Hispanic ethnicity may relate to greater likelihood of non-Alzheimer's contributions to memory loss. HIGHLIGHTS: Alzheimer's biomarkers were measured in Hispanic and non-Hispanic older adults. Plasma p-tau181 related to amnestic cognitive decline and brain amyloid burden. AD biomarker associations did not differ between Hispanic and non-Hispanic ethnicity. Hispanic individuals may be more likely to have non-Alzheimer causes of memory loss.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Feminino , Humanos , Idoso , Pessoa de Meia-Idade , Masculino , Proteínas Amiloidogênicas , Encéfalo/diagnóstico por imagem , Amnésia , Biomarcadores , Peptídeos beta-Amiloides , Proteínas tau
4.
Hum Brain Mapp ; 43(2): 844-859, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716740

RESUMO

Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and predictive of functional outcomes, though their neural underpinnings remain poorly understood. Using functional magnetic resonance imaging, we examined both brain activation and functional connectivity during visuomotor behavior in 27 individuals with ASD and 30 typically developing (TD) controls (ages 9-35 years). Participants maintained a constant grip force while receiving visual feedback at three different visual gain levels. Relative to controls, ASD participants showed increased force variability, especially at high gain, and reduced entropy. Brain activation was greater in individuals with ASD than controls in supplementary motor area, bilateral superior parietal lobules, and contralateral middle frontal gyrus at high gain. During motor action, functional connectivity was reduced between parietal-premotor and parietal-putamen in individuals with ASD compared to controls. Individuals with ASD also showed greater age-associated increases in functional connectivity between cerebellum and visual, motor, and prefrontal cortical areas relative to controls. These results indicate that visuomotor deficits in ASD are associated with atypical activation and functional connectivity of posterior parietal, premotor, and striatal circuits involved in translating sensory feedback information into precision motor behaviors, and that functional connectivity of cerebellar-cortical sensorimotor and nonsensorimotor networks show delayed maturation.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
5.
Mov Disord ; 37(2): 325-333, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724257

RESUMO

BACKGROUND: Rasagiline has received attention as a potential disease-modifying therapy for Parkinson's disease (PD). Whether rasagiline is disease modifying remains in question. OBJECTIVE: The main objective of this study was to determine whether rasagiline has disease-modifying effects in PD over 1 year. Secondarily we evaluated two diffusion magnetic resonance imaging pulse sequences to determine the best sequence to measure disease progression. METHODS: This prospective, randomized, double-blind, placebo-controlled trial assessed the effects of rasagiline administered at 1 mg/day over 12 months in early-stage PD. The primary outcome was 1-year change in free-water accumulation in posterior substantia nigra (pSN) measured using two diffusion magnetic resonance imaging pulse sequences, one with a repetition time (TR) of 2500 ms (short TR; n = 90) and one with a TR of 6400 ms (long TR; n = 75). Secondary clinical outcomes also were assessed. RESULTS: Absolute change in pSN free-water accumulation was not significantly different between groups (short TR: P = 0.346; long TR: P = 0.228). No significant differences were found in any secondary clinical outcomes between groups. Long TR, but not short TR, data show pSN free-water increased significantly over 1 year (P = 0.025). Movement Disorder Society Unified Parkinson's Disease Rating Scale testing of motor function, Part III increased significantly over 1 year (P = 0.009), and baseline free-water in the pSN correlated with the 1-year change in Movement Disorder Society Unified Parkinson's Disease Rating Scale testing of motor function, Part III (P = 0.004) and 1-year change in bradykinesia score (P = 0.044). CONCLUSIONS: We found no evidence that 1 mg/day rasagiline has a disease-modifying effect in PD over 1 year. We found pSN free-water increased over 1 year, and baseline free-water relates to clinical motor progression, demonstrating the importance of diffusion imaging parameters for detecting and predicting PD progression. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Imagem de Difusão por Ressonância Magnética , Progressão da Doença , Método Duplo-Cego , Humanos , Indanos/farmacologia , Indanos/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Estudos Prospectivos
6.
Mov Disord ; 37(6): 1272-1281, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403258

RESUMO

BACKGROUND: Differentiating progressive supranuclear palsy-parkinsonism (PSP-P) from Parkinson's disease (PD) is clinically challenging. OBJECTIVE: This study aimed to develop an automated Magnetic Resonance Parkinsonism Index 2.0 (MRPI 2.0) algorithm to distinguish PSP-P from PD and to validate its diagnostic performance in two large independent cohorts. METHODS: We enrolled 676 participants: a training cohort (n = 346; 43 PSP-P, 194 PD, and 109 control subjects) from our center and an independent testing cohort (n = 330; 62 PSP-P, 171 PD, and 97 control subjects) from an international research group. We developed a new in-house algorithm for MRPI 2.0 calculation and assessed its performance in distinguishing PSP-P from PD and control subjects in both cohorts using receiver operating characteristic curves. RESULTS: The automated MRPI 2.0 showed excellent performance in differentiating patients with PSP-P from patients with PD and control subjects both in the training cohort (area under the receiver operating characteristic curve [AUC] = 0.93 [95% confidence interval, 0.89-0.98] and AUC = 0.97 [0.93-1.00], respectively) and in the international testing cohort (PSP-P versus PD, AUC = 0.92 [0.87-0.97]; PSP-P versus controls, AUC = 0.94 [0.90-0.98]), suggesting the generalizability of the results. The automated MRPI 2.0 also accurately distinguished between PSP-P and PD in the early stage of the diseases (AUC = 0.91 [0.84-0.97]). A strong correlation (r = 0.91, P < 0.001) was found between automated and manual MRPI 2.0 values. CONCLUSIONS: Our study provides an automated, validated, and generalizable magnetic resonance biomarker to distinguish PSP-P from PD. The use of the automated MRPI 2.0 algorithm rather than manual measurements could be important to standardize measures in patients with PSP-P across centers, with a positive impact on multicenter studies and clinical trials involving patients from different geographic regions. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Paralisia/diagnóstico , Doença de Parkinson/diagnóstico , Doença de Parkinson/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem
7.
J Neurosci ; 40(8): 1722-1731, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31941666

RESUMO

Regulating muscle force and timing are fundamental for accurate motor performance. In spinocerebellar ataxia type 6 (SCA6), there is evidence that individuals have greater force dysmetria but display better temporal accuracy during fast goal directed contractions. Here, we test whether greater temporal accuracy occurs in all individuals with SCA6, and can be explained by lesser temporal variability. Further we examine whether it is linked to disease severity and specific degenerative changes in the cerebellum. Nineteen human participants with SCA6 (13 woman) and 18 healthy controls performed fast goal-directed ankle dorsiflexion contractions aiming at a spatiotemporal target. We quantified the endpoint control of these contractions, gray matter (GM) integrity of the cerebellum, and disease severity using the International Cooperative Ataxia Rating Scale (ICARS). SCA6 individuals exhibited lower temporal endpoint error and variability than the healthy controls (p = 0.008). Statistically, SCA6 clustered into two distinct groups for temporal variability. A group with low temporal variability ranging from 10 to 19% (SCA6a) and a group with temporal variability similar to healthy controls (SCA6b; 19-40%).SCA6a exhibited greater disease severity than SCA6b, as assessed with ICARS (p < 0.001). Lower temporal variability, which was not associated with disease duration (R2 = 0.1, p > 0.2), did correlate with both greater ICARS (R2 = 0.3) and reduced GM volume in cerebellar lobule VI (R2 = 0.35). Other cerebellar lobules did not relate to temporal variability. We provide new evidence that a subset of SCA6 with greater loss of GM in cerebellum lobule VI exhibit temporal invariance and more severe ataxia than other SCA6 individuals.SIGNIFICANCE STATEMENT Variability is an inherent feature of voluntary movement, and traditionally more variability in the targeted output infers impaired performance. For example, cerebellar patients present exacerbated temporal variability during multijoint movements, which is thought to contribute to their motor deficits. In the current work, we show that in a subgroup of spinocerebellar ataxia type 6 individuals, temporal variability is lower than that of healthy controls when performing single-joint fast-goal directed movements. This invariance related to exacerbated atrophy of lobule VI of the cerebellum and exacerbated disease severity. The relation between invariance and disease severity suggests that pathological motor variability can manifest not only as an exacerbation but also as a reduction relative to healthy controls.


Assuntos
Cerebelo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Ataxias Espinocerebelares/diagnóstico por imagem , Idoso , Atrofia/diagnóstico por imagem , Atrofia/patologia , Cerebelo/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Ataxias Espinocerebelares/patologia
8.
J Neurosci ; 40(34): 6649-6659, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32669353

RESUMO

In vivo functional and structural brain imaging of synucleinopathies in humans have provided a rich new understanding of the affected networks across the cortex and subcortex. Despite this progress, the temporal relationship between α-synuclein (α-syn) pathology and the functional and structural changes occurring in the brain is not well understood. Here, we examine the temporal relationship between locomotor ability, brain microstructure, functional brain activity, and α-syn pathology by longitudinally conducting rotarod, diffusion magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), and sensory-evoked fMRI on 20 mice injected with α-syn fibrils and 20 PBS-injected mice at three timepoints (10 males and 10 females per group). Intramuscular injection of α-syn fibrils in the hindlimb of M83+/- mice leads to progressive α-syn pathology along the spinal cord, brainstem, and midbrain by 16 weeks post-injection. Our results suggest that peripheral injection of α-syn has acute systemic effects on the central nervous system such that structural and resting-state functional activity changes occur in the brain by four weeks post-injection, well before α-syn pathology reaches the brain. At 12 weeks post-injection, a separate and distinct pattern of structural and sensory-evoked functional brain activity changes was observed that are co-localized with previously reported regions of α-syn pathology and immune activation. Microstructural changes in the pons at 12 weeks post-injection were found to predict survival time and preceded measurable locomotor deficits. This study provides preliminary evidence for diffusion and fMRI markers linked to the progression of synuclein pathology and has translational importance for understanding synucleinopathies in humans.SIGNIFICANCE STATEMENT α-Synuclein (α-syn) pathology plays a critical role in neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The longitudinal effects of α-syn pathology on locomotion, brain microstructure, and functional brain activity are not well understood. Using high field imaging, we show preliminary evidence that peripheral injection of α-syn fibrils induces unique patterns of functional and structural changes that occur at different temporal stages of α-syn pathology progression. Our results challenge existing assumptions that α-syn pathology must precede changes in brain structure and function. Additionally, we show preliminary evidence that diffusion and functional magnetic resonance imaging (fMRI) are capable of resolving such changes and thus should be explored further as markers of disease progression.


Assuntos
Encéfalo/fisiologia , Encéfalo/fisiopatologia , Potenciais Somatossensoriais Evocados , Locomoção/fisiologia , Sinucleinopatias/patologia , Sinucleinopatias/fisiopatologia , alfa-Sinucleína/administração & dosagem , Animais , Comportamento Animal , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Feminino , Temperatura Alta , Humanos , Locomoção/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Estimulação Física
9.
Neuroimage ; 245: 118710, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780917

RESUMO

In addition to the well-established somatotopy in the pre- and post-central gyrus, there is now strong evidence that somatotopic organization is evident across other regions in the sensorimotor network. This raises several experimental questions: To what extent is activity in the sensorimotor network effector-dependent and effector-independent? How important is the sensorimotor cortex when predicting the motor effector? Is there redundancy in the distributed somatotopically organized network such that removing one region has little impact on classification accuracy? To answer these questions, we developed a novel experimental approach. fMRI data were collected while human subjects performed a precisely controlled force generation task separately with their hand, foot, and mouth. We used a simple linear iterative clustering (SLIC) algorithm to segment whole-brain beta coefficient maps to build an adaptive brain parcellation and then classified effectors using extreme gradient boosting (XGBoost) based on parcellations at various spatial resolutions. This allowed us to understand how data-driven adaptive brain parcellation granularity altered classification accuracy. Results revealed effector-dependent activity in regions of the post-central gyrus, precentral gyrus, and paracentral lobule. SMA, regions of the inferior and superior parietal lobule, and cerebellum each contained effector-dependent and effector-independent representations. Machine learning analyses showed that increasing the spatial resolution of the data-driven model increased classification accuracy, which reached 94% with 1755 supervoxels. Our SLIC-based supervoxel parcellation outperformed classification analyses using established brain templates and random simulations. Occlusion experiments further demonstrated redundancy across the sensorimotor network when classifying effectors. Our observations extend our understanding of effector-dependent and effector-independent organization within the human brain and provide new insight into the functional neuroanatomy required to predict the motor effector used in a motor control task.


Assuntos
Mapeamento Encefálico/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
10.
Neuroimage ; 226: 117627, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301937

RESUMO

Integrating visual information for motor output is an essential process of visually-guided motor control. The brainstem is known to be a major center involved in the integration of sensory information for motor output, however, limitations of functional imaging in humans have impaired our knowledge about the individual roles of sub-nuclei within the brainstem. Thus, the bulk of our knowledge surrounding the function of the brainstem is based on anatomical and behavioral studies in non-human primates, cats, and rodents, despite studies demonstrating differences in the organization of visuomotor processing between mammals. fMRI studies in humans have examined activity related to visually-guided motor tasks, however, few have done so while controlling for both force without visual feedback activity and visual stimuli without force activity. Of the studies that have controlled for both conditions, none have reported brainstem activity. Here, we employed a novel fMRI paradigm focused on the brainstem and cerebellum to systematically investigate the hypothesis that the pons and midbrain are critical for the integration of visual information for motor control. Visuomotor activity during visually-guided pinch-grip force was measured while controlling for force without visual feedback activity and visual stimuli without force activity in healthy adults. Using physiological noise correction and multiple task repetitions, we demonstrated that visuomotor activity occurs in the inferior portion of the basilar pons and the midbrain. These findings provide direct evidence in humans that the pons and midbrain support the integration of visual information for motor control. We also determined the effect of physiological noise and task repetitions on the visuomotor signal that will be useful in future studies of neurodegenerative diseases affecting the brainstem.


Assuntos
Mapeamento Encefálico/métodos , Tronco Encefálico/fisiologia , Neuroimagem Funcional/métodos , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
11.
Neurobiol Dis ; 154: 105342, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33757902

RESUMO

Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry heterozygous DYT1 ∆GAG mutations causing a loss of a glutamic acid of the protein torsinA. Patients can be treated with anticholinergics, such as trihexyphenidyl, suggesting an abnormal cholinergic state. Early work on the cell-autonomous effects of Dyt1 deletion with ChI-specific Dyt1 conditional knockout mice (Dyt1 Ch1KO) revealed abnormal electrophysiological responses of striatal ChIs to muscarine and quinpirole, motor deficits, and no changes in the number or size of the ChIs. However, the Chat-cre line that was used to derive Dyt1 Ch1KO mice contained a neomycin cassette and was reported to have ectopic cre-mediated recombination. In this study, we generated a Dyt1 Ch2KO mouse line by removing the neomycin cassette in Dyt1 Ch1KO mice. The Dyt1 Ch2KO mice showed abnormal paw clenching behavior, motor coordination and balance deficits, impaired motor learning, reduced striatal choline acetyltransferase protein level, and a reduced number of striatal ChIs. Furthermore, the mutant striatal ChIs had a normal muscarinic inhibitory function, impaired quinpirole-mediated inhibition, and altered current density. Our findings demonstrate a cell-autonomous effect of Dyt1 deletion on the striatal ChIs and a critical role for the striatal ChIs and corticostriatal pathway in the pathogenesis of DYT1 dystonia.


Assuntos
Neurônios Colinérgicos/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Transtornos Motores/genética , Transtornos Motores/metabolismo , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Neurônios Colinérgicos/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Chaperonas Moleculares/biossíntese , Transtornos Motores/patologia
12.
Ann Neurol ; 88(2): 375-387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418250

RESUMO

OBJECTIVE: This study addresses an important problem in neurology, distinguishing tremor and ataxia using quantitative methods. Specifically, we aimed to quantitatively separate dysmetria, a cardinal sign of ataxia, from tremor in essential tremor (ET). METHODS: In Experiment 1, we compared 19 participants diagnosed with ET undergoing thalamic deep brain stimulation (DBS; ETDBS ) to 19 healthy controls (HC). We quantified tremor during postural tasks using accelerometry and dysmetria with fast, reverse-at-target goal-directed movements. To ensure that endpoint accuracy was unaffected by tremor, we quantified dysmetria in selected trials manifesting a smooth trajectory to the endpoint. Finally, we manipulated tremor amplitude by switching DBS ON and OFF to examine its effect on dysmetria. In Experiment 2, we compared 10 ET participants with 10 HC to determine whether we could identify and distinguish dysmetria from tremor in non-DBS ET. RESULTS: Three findings suggest that we can quantify dysmetria independently of tremor in ET. First, ETDBS and ET exhibited greater dysmetria than HC and dysmetria did not correlate with tremor (R2 < 0.01). Second, even for trials with tremor-free trajectories to the target, ET exhibited greater dysmetria than HC (p < 0.01). Third, activating DBS reduced tremor (p < 0.01) but had no effect on dysmetria (p > 0.2). INTERPRETATION: We demonstrate that dysmetria can be quantified independently of tremor using fast, reverse-at-target goal-directed movements. These results have important implications for the understanding of ET and other cerebellar and tremor disorders. Future research should examine the neurophysiological mechanisms underlying each symptom and characterize their independent contribution to disability. ANN NEUROL 2020;88:375-387.


Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/fisiopatologia , Tremor Essencial/diagnóstico , Tremor Essencial/fisiopatologia , Tremor/diagnóstico , Tremor/fisiopatologia , Idoso , Ataxia Cerebelar/terapia , Estimulação Encefálica Profunda/métodos , Diagnóstico Diferencial , Tremor Essencial/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Postura/fisiologia , Tremor/terapia
13.
Mov Disord ; 36(3): 681-689, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33151015

RESUMO

BACKGROUND: Enlargement of the third ventricle has been reported in atypical parkinsonism. We investigated whether the measurement of third ventricle width could distinguish Parkinson's disease (PD) from progressive supranuclear palsy (PSP). METHODS: We assessed a new MR T1-weighted measurement (third ventricle width/internal skull diameter) in a training cohort of 268 participants (98 PD, 73 PSP, 98 controls from our center) and in a testing cohort of 291 participants (82 de novo PD patients and 133 controls from the Parkinson's Progression Markers Initiative, 76 early-stage PSP from an international research group). PD diagnosis was confirmed after a 4-year follow-up. Diagnostic performance of the third ventricle/internal skull diameter was assessed using receiver operating characteristic curve with bootstrapping; the area under the curve of the training cohort was compared with the area under the curve of the testing cohort using the De Long test. RESULTS: In both cohorts, third ventricle/internal skull diameter values did not differ between PD and controls but were significantly lower in PD than in PSP patients (P < 0.0001). In PD, third ventricle/internal skull diameter values did not change significantly between baseline and follow-up evaluation. Receiver operating characteristic analysis accurately differentiated PD from PSP in the training cohort (area under the curve, 0.94; 95% CI, 91.1-97.6; cutoff, 5.72) and in the testing cohort (area under the curve, 0.91; 95% CI, 87.0-97.0; cutoff,: 5.88), validating the generalizability of the results. CONCLUSION: Our study provides a new reliable and validated MRI measurement for the early differentiation of PD and PSP. The simplicity and generalizability of this biomarker make it suitable for routine clinical practice and for selection of patients in clinical trials worldwide. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico por imagem
14.
Neurobiol Dis ; 134: 104638, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618684

RESUMO

DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dimers and tyrosine hydroxylase without significant alteration in striatal monoamine contents or the number of dopaminergic neurons in the substantia nigra. The Dyt1 d2KO male mice showed motor deficits in the accelerated rotarod and beam-walking tests without overt dystonic symptoms. Moreover, the Dyt1 d2KO male mice showed significant correlations between striatal monoamines and locomotion. The results suggest that torsinA in the D2R-expressing cells play a critical role in the development or survival of the striatal cholinergic interneurons, expression of striatal D2R mature form, and motor performance. Medical interventions to compensate for the loss of torsinA function in these neurons may affect the onset and symptoms of this disease.


Assuntos
Neurônios Colinérgicos/patologia , Distonia Muscular Deformante/metabolismo , Interneurônios/patologia , Chaperonas Moleculares/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/patologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Transtornos Motores/genética , Transtornos Motores/metabolismo
15.
Mov Disord ; 35(8): 1388-1395, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32357259

RESUMO

OBJECTIVE: Accurate diagnosis is particularly challenging in Parkinson's disease (PD), multiple system atrophy (MSAp), and progressive supranuclear palsy (PSP). We compare the utility of 3 promising biomarkers to differentiate disease state and explain disease severity in parkinsonism: the Automated Imaging Differentiation in Parkinsonism (AID-P), the Magnetic Resonance Parkinsonism Index (MRPI), and plasma-based neurofilament light chain protein (NfL). METHODS: For each biomarker, the area under the curve (AUC) of receiver operating characteristic curves were quantified for PD versus MSAp/PSP and MSAp versus PSP and statistically compared. Unique combinations of variables were also assessed. Furthermore, each measures association with disease severity was determined using stepwise multiple regression. RESULTS: For PD versus MSAp/PSP, AID-P (AUC, 0.900) measures had higher AUC compared with NfL (AUC, 0.747) and MRPI (AUC, 0.669), P < 0.05. For MSAp versus PSP, AID-P (AUC, 0.889), and MRPI (AUC, 0.824) measures were greater than NfL (AUC, 0.537), P < 0.05. We then combined measures to determine if any unique combination provided enhanced accuracy and found that no combination performed better than the AID-P alone in differentiating parkinsonisms. Furthermore, we found that the AID-P demonstrated the highest association with the MDS-UPDRS (Radj2 -AID-P, 26.58%; NfL,15.12%; MRPI, 12.90%). CONCLUSIONS: Compared with MRPI and NfL, AID-P provides the best overall differentiation of PD versus MSAp/PSP. Both AID-P and MRPI are effective in differentiating MSAp versus PSP. Furthermore, combining biomarkers did not improve classification of disease state compared with using AID-P alone. The findings demonstrate in the current sample that the AID-P and MRPI are robust biomarkers for PD, MSAp, and PSP. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Humanos , Filamentos Intermediários , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem
16.
Mov Disord ; 35(6): 976-983, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092195

RESUMO

BACKGROUND: The Magnetic Resonance Parkinsonism Index is listed as one of the most reliable imaging morphometric markers for diagnosis of progressive supranuclear palsy (PSP). However, the use of this index in diagnostic workup has been limited until now by the low generalizability of published results because of small monocentric patient cohorts, the lack of data validation in independent patient series, and manual measurements used for index calculation. The objectives of this study were to investigate the generalizability of Magnetic Resonance Parkinsonism Index performance validating previously established cutoff values in a large international cohort of PSP patients subclassified into PSP-Richardson's syndrome and PSP-parkinsonism and to standardize the use of the automated Magnetic Resonance Parkinsonism Index by providing a web-based platform to obtain homogenous measures around the world. METHODS: In a retrospective international multicenter study, a total of 173 PSP patients and 483 non-PSP participants were enrolled. A web-based platform (https://mrpi.unicz.it) was used to calculate automated Magnetic Resonance Parkinsonism Index values. RESULTS: Magnetic Resonance Parkinsonism Index values showed optimal performance in differentiating PSP-Richardson's syndrome and PSP-parkinsonism patients from non-PSP participants (93.6% and 86.5% of accuracy, respectively). The Magnetic Resonance Parkinsonism Index was also able to differentiate PSP-Richardson's syndrome and PSP-parkinsonism patients in an early stage of the disease from non-PSP participants (90.1% and 85.9%, respectively). The web-based platform provided the automated Magnetic Resonance Parkinsonism Index calculation in 94% of cases. CONCLUSIONS: Our study provides the first evidence on the generalizability of automated Magnetic Resonance Parkinsonism Index measures in a large international cohort of PSP-Richardson's syndrome and PSP-parkinsonism patients. The web-based platform enables widespread applicability of the automated Magnetic Resonance Parkinsonism Index to different clinical and research settings. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Paralisia Supranuclear Progressiva , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico por imagem
17.
Brain ; 142(6): 1644-1659, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30957839

RESUMO

Dystonia is a movement disorder characterized by involuntary muscle co-contractions that give rise to disabling movements and postures. A recent expert consensus labelled the incidence of tremor as a core feature of dystonia that can affect body regions both symptomatic and asymptomatic to dystonic features. We are only beginning to understand the neural network-level signatures that relate to clinical features of dystonic tremor. At the same time, clinical features of dystonic tremor can resemble that of essential tremor and present a diagnostic confound for clinicians. Here, we examined network-level functional activation and connectivity in patients with dystonic tremor and essential tremor. The dystonic tremor group included primarily cervical dystonia patients with dystonic head tremor and the majority had additional upper-limb tremor. The experimental paradigm included a precision grip-force task wherein online visual feedback related to force was manipulated across high and low spatial feedback levels. Prior work using this paradigm in essential tremor patients produced exacerbation of grip-force tremor and associated changes in functional activation. As such, we directly compared the effect of visual feedback on grip-force tremor and associated functional network-level activation and connectivity between dystonic tremor and essential tremor patient cohorts to better understand disease-specific mechanisms. Increased visual feedback similarly exacerbated force tremor during the grip-force task in dystonic tremor and essential tremor cohorts. Patients with dystonic tremor and essential tremor were characterized by distinct functional activation abnormalities in cortical regions but not in the cerebellum. We examined seed-based functional connectivity from the sensorimotor cortex, globus pallidus internus, ventral intermediate thalamic nucleus, and dentate nucleus, and observed abnormal functional connectivity networks in dystonic tremor and essential tremor groups relative to controls. However, the effects were far more widespread in the dystonic tremor group as changes in functional connectivity were revealed across cortical, subcortical, and cerebellar regions independent of the seed location. A unique pattern for dystonic tremor included widespread reductions in functional connectivity compared to essential tremor within higher-level cortical, basal ganglia, and cerebellar regions. Importantly, a receiver operating characteristic determined that functional connectivity z-scores were able to classify dystonic tremor and essential tremor with 89% area under the curve, whereas combining functional connectivity with force tremor yielded 94%. These findings point to network-level connectivity as an important feature that differs substantially between dystonic tremor and essential tremor and should be further explored in implementing appropriate diagnostic and therapeutic strategies.


Assuntos
Distonia/congênito , Distúrbios Distônicos/fisiopatologia , Tremor Essencial/fisiopatologia , Vias Neurais/fisiopatologia , Tremor/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cerebelo/fisiopatologia , Distonia/fisiopatologia , Globo Pálido/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia
18.
Neuroimage ; 200: 302-312, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260838

RESUMO

Understanding the architecture of transcallosal connections would allow for more specific assessments of neurodegeneration across many fields of neuroscience, neurology, and psychiatry. To map these connections, we conducted probabilistic tractography in 100 Human Connectome Project subjects in 32 cortical areas using novel post-processing algorithms to create a spatially precise Trancallosal Tract Template (TCATT). We found robust transcallosal tracts in all 32 regions, and a topographical analysis in the corpus callosum largely agreed with well-established subdivisions of the corpus callosum. We then obtained diffusion MRI data from a cohort of patients with Alzheimer's disease (AD) and another with progressive supranuclear palsy (PSP) and used a two-compartment model to calculate free-water corrected fractional anisotropy (FAT) and free-water (FW) within the TCATT. These metrics were used to determine between-group differences and to determine which subset of tracts was best associated with cognitive function (Montreal Cognitive Assessment (MoCA)). In AD, we found robust between-group differences in FW (31/32 TCATT tracts) in the absence of between-group differences in FAT. FW in the inferior temporal gyrus TCATT tract was most associated with MoCA scores in AD. In PSP, there were widespread differences in both FAT and FW, and MoCA was predicted by FAT in the inferior frontal pars triangularis, preSMA, and medial frontal gyrus TCATT tracts as well as FW in the inferior frontal pars opercularis TCATT tract. The TCATT improves spatial localization of corpus callosum measurements to enhance the evaluation of treatment effects, as well as the monitoring of brain microstructure in relation to cognitive dysfunction and disease progression. Here, we have shown its direct relevance in capturing between-group differences and associating it with the MoCA in AD and PSP.


Assuntos
Doença de Alzheimer/patologia , Atlas como Assunto , Conectoma , Corpo Caloso/patologia , Imagem de Tensor de Difusão/métodos , Rede Nervosa/patologia , Paralisia Supranuclear Progressiva/patologia , Adulto , Doença de Alzheimer/diagnóstico por imagem , Água Corporal/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Adulto Jovem
19.
Neuroimage ; 202: 116138, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472250

RESUMO

Extracellular ß-amyloid (Aß) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aß and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aß deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aß production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Hipocampo , Interleucina-6/metabolismo , Rede Nervosa , Neuritos/ultraestrutura , Substância Branca , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia
20.
J Neurophysiol ; 122(4): 1330-1341, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314644

RESUMO

In addition to core deficits in social-communication abilities and repetitive behaviors and interests, many patients with autism spectrum disorder (ASD) experience developmental comorbidities, including sensorimotor issues. Sensorimotor issues are common in ASD and associated with more severe clinical symptoms. Importantly, sensorimotor behaviors are precisely quantifiable and highly translational, offering promising targets for neurophysiological studies of ASD. We used functional MRI to identify brain regions associated with sensorimotor behavior using a visually guided precision gripping task in individuals with ASD (n = 20) and age-, IQ-, and handedness-matched controls (n = 18). During visuomotor behavior, individuals with ASD showed greater force variability than controls. The blood oxygen level-dependent signal for multiple cortical and subcortical regions was associated with force variability, including motor and premotor cortex, posterior parietal cortex, extrastriate cortex, putamen, and cerebellum. Activation in the right premotor cortex scaled with sensorimotor variability in controls but not in ASD. Individuals with ASD showed greater activation than controls in left putamen and left cerebellar lobule VIIb, and activation in these regions was associated with more severe clinically rated symptoms of ASD. Together, these results suggest that greater sensorimotor variability in ASD is associated with altered cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output. Our findings also indicate that atypical organization of visuomotor cortical circuits may result in heightened reliance on subcortical circuits typically dedicated to motor skill acquisition. Overall, these results provide new evidence that sensorimotor alterations in ASD involve aberrant cortical and subcortical organization that may contribute to key clinical issues in patients.NEW & NOTEWORTHY This is the first known study to examine functional brain activation during precision visuomotor behavior in autism spectrum disorder (ASD). We replicate previous findings of elevated force variability in ASD and find these deficits are associated with atypical function of ventral premotor cortex, putamen, and posterolateral cerebellum, indicating cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output may be key targets for understanding the neurobiology of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Encéfalo/fisiopatologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Cerebelo/fisiopatologia , Feminino , Força da Mão , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiopatologia , Putamen/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa