Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(5): e23514, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466151

RESUMO

In the past decade, there has been a steady rise in interest in studying novel cellular extensions and their potential roles in facilitating human diseases, including neurologic diseases, viral infectious diseases, cancer, and others. One of the exciting new aspects of this field is improved characterization and understanding of the functions and potential mechanisms of tunneling nanotubes (TNTs), which are actin-based filamentous protrusions that are structurally distinct from filopodia. TNTs form and connect cells at long distance and serve as direct conduits for intercellular communication in a wide range of cell types in vitro and in vivo. More researchers are entering this field and investigating the role of TNTs in mediating cancer cell invasion and drug resistance, cellular transfer of proteins, RNA or organelles, and intercellular spread of infectious agents, such as viruses, bacteria, and prions. Even further, the elucidation of highly functional membrane tubes called "tumor microtubes" (TMs) in incurable gliomas has further paved a new path for understanding how and why the tumor type is highly invasive at the cellular level and also resistant to standard therapies. Due to the wide-ranging and rapidly growing applicability of TNTs and TMs in pathophysiology across the spectrum of biology, it has become vital to bring researchers in the field together to discuss advances and the future of research in this important niche of protrusion biology.


Assuntos
Estruturas da Membrana Celular , Glioma , Nanotubos , Humanos , Comunicação Celular , Citoesqueleto de Actina
2.
Mol Biol Cell ; 35(7): ar98, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809582

RESUMO

C. elegans undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads. We observe early onset sarcopenia when UNC-45 is reduced at the beginning of adulthood. There is sequential decline of HSP-90, UNC-45, and MHC B myosin. A mutation in age-1 delays sarcopenia and loss of HSP-90, UNC-45, and myosin. UNC-45 undergoes age-dependent phosphorylation, and mass spectrometry reveals phosphorylation of six serines and two threonines, seven of which occur in the UCS domain. Additional expression of UNC-45 results in maintenance of MHC B myosin and suppression of A-band disorganization in old animals. Our results suggest that increased expression or activity of UNC-45 might be a strategy for prevention or treatment of sarcopenia.


Assuntos
Envelhecimento , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Chaperonas Moleculares , Miosinas , Sarcômeros , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo , Fosforilação , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Mutação , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa