Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microb Cell Fact ; 23(1): 41, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321489

RESUMO

BACKGROUND: Developing effective vaccines against SARS-CoV-2 that consider manufacturing limitations, equitable access, and acceptance is necessary for developing platforms to produce antigens that can be efficiently presented for generating neutralizing antibodies and as a model for new vaccines. RESULTS: This work presents the development of an applicable technology through the oral administration of the SARS-CoV-2 RBD antigen fused with a peptide to improve its antigenic presentation. We focused on the development and production of the recombinant receptor binding domain (RBD) produced in E. coli modified with the addition of amino acids extension designed to improve antigen presentation. The production was carried out in shake flask and bioreactor cultures, obtaining around 200 mg/L of the antigen. The peptide-fused RBD and peptide-free RBD proteins were characterized and compared using SDS-PAGE gel, high-performance chromatography, and circular dichroism. The peptide-fused RBD was formulated in an oil-in-water emulsion for oral mice immunization. The peptide-fused RBD, compared to RBD, induced robust IgG production in mice, capable of recognizing the recombinant RBD in Enzyme-linked immunosorbent assays. In addition, the peptide-fused RBD generated neutralizing antibodies in the sera of the dosed mice. The formulation showed no reactive episodes and no changes in temperature or vomiting. CONCLUSIONS: Our study demonstrated the effectiveness of the designed peptide added to the RBD to improve antigen immunostimulation by oral administration.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Vacinas contra COVID-19 , Escherichia coli , Administração Oral , Antígenos Virais , Anticorpos Neutralizantes , Peptídeos , Anticorpos Antivirais
2.
Prep Biochem Biotechnol ; : 1-12, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701182

RESUMO

The effect of gradients of elevated glucose and low dissolved oxygen in the addition zone of fed-batch E. coli thermoinduced recombinant high cell density cultures can be evaluated through two-compartment scale-down models. Here, glucose was fed in the inlet of a plug flow bioreactor (PFB) connected to a stirred tank bioreactor (STB). E. coli cells diminished growth from 48.2 ± 2.2 g/L in the stage of RP production if compared to control (STB) with STB-PFB experiments, when residence time inside the PFB was 25 s (34.1 ± 3.5 g/L) and 40 s (25.6 ± 5.1 g/L), respectively. The recombinant granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) production decreased from 34 ± 7% of RP in inclusion bodies (IB) in control cultures to 21 ± 8%, and 7 ± 4% during the thermoinduction production phase when increasing residence time inside the PFB to 25 s and 40 s, respectively. This, along with the accumulation of acetic and formic acid (up to 4 g/L), indicates metabolic redirection of central carbon routes through metabolic flow and mixed acid fermentation. Special care must be taken when producing a recombinant protein in heat-induced E. coli, because the yield and productivity of the protein decreases as the size of the bioreactors increases, especially if they are carried at high cell density.


Thermoinduced recombinant E. coli grew less in a two-compartment scale-down model.Heat-inducible E. coli cultures at a large scale significantly decrease recombinant protein production.The accumulation of acetic and formic acid increases when E. coli is exposed to glucose and oxygen gradients.The axial flow pattern inside the PFB mimics glucose and dissolved oxygen gradients at the industrial scale.

3.
World J Microbiol Biotechnol ; 40(6): 174, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642254

RESUMO

Bacterial extracellular vesicles (BEVs) are non-replicative nanostructures released by Gram-negative and Gram-positive bacteria as a survival mechanism and inter- and intraspecific communication mechanism. Due to BEVs physical, biochemical, and biofunctional characteristics, there is interest in producing and using them in developing new therapeutics, vaccines, or delivery systems. However, BEV release is typically low, limiting their application. Here, we provide a biotechnological perspective to enhance BEV production, highlighting current strategies. The strategies include the production of hypervesiculating strains through gene modification, bacteria culture under stress conditions, and artificial vesicles production. We discussed the effect of these production strategies on BEVs types, morphology, composition, and activity. Furthermore, we summarized general aspects of BEV biogenesis, functional capabilities, and applications, framing their current importance and the need to produce them in abundance. This review will expand the knowledge about the range of strategies associated with BEV bioprocesses to increase their productivity and extend their application possibilities.


Assuntos
Vesículas Extracelulares , Bactérias Gram-Positivas , Biotecnologia
4.
World J Microbiol Biotechnol ; 39(7): 194, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169980

RESUMO

Terpenes and terpenoids are a group of isoprene-derived molecules that constitute the largest group of natural products and secondary metabolites produced by living things, with more than 25,000 compounds reported. These compounds are synthesized by enzymes called terpene synthases, which include several families of cyclases and enzymes. These are responsible for adding functional groups to cyclized structures. Fungal terpenoids are of great interest for their pharmacological properties; therefore, understanding the mechanisms that regulate their synthesis (regulation of the mevalonate pathway, regulation of gene expression, and availability of cofactors) is essential to direct their production. For this reason, this review addresses the detailed study of the biosynthesis of fungal terpenoids and their regulation by various physiological and environmental factors.


Assuntos
Alquil e Aril Transferases , Proteínas Fúngicas , Fungos , Terpenos , Terpenos/metabolismo , Fungos/enzimologia , Alquil e Aril Transferases/metabolismo , Proteínas Fúngicas/metabolismo
5.
Appl Microbiol Biotechnol ; 106(8): 2883-2902, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35412129

RESUMO

The overproduction of recombinant proteins in Escherichia coli leads to insoluble aggregates of proteins called inclusion bodies (IBs). IBs are considered dynamic entities that harbor high percentages of the recombinant protein, which can be found in different conformational states. The production conditions influence the properties of IBs and recombinant protein recovery and solubilization. The E. coli growth in thermoinduced systems is generally carried out at 30 °C and then recombinant protein production at 42 °C. Since the heat shock response in E. coli is triggered above 34 °C, the synthesis of heat shock proteins can modify the yields of the recombinant protein and the structural quality of IBs. The objective of this work was to evaluate the effect of different pre-induction temperatures (30 and 34 °C) on the growth of E. coli W3110 producing the human granulocyte-macrophage colony-stimulating factor (rHuGM-CSF) and on the IBs structure in a λpL/pR-cI857 thermoinducible system. The recombinant E. coli cultures growing at 34 °C showed a ~ 69% increase in the specific growth rate compared to cultures grown at 30 °C. The amount of rHuGM-CSF in IBs was significantly higher in cultures grown at 34 °C. Main folding chaperones (DnaK and GroEL) were associated with IBs and their co-chaperones (DnaJ and GroES) with the soluble protein fraction. Finally, IBs from cultures that grew at 34 °C had a lower content of amyloid-like structure and were more sensitive to proteolytic degradation than IBs obtained from cultures at 30 °C. Our study presents evidence that increasing the pre-induction temperature in a thermoinduced system allows obtaining higher recombinant protein and reducing amyloid contents of the IBs. KEY POINTS: • Pre-induction temperature determines inclusion bodies architecture • In pre-induction (above 34 °C), the heat shock response increases recombinant protein production • Inclusion bodies at higher pre-induction temperature show a lower amyloid content.


Assuntos
Corpos de Inclusão , Proteínas Recombinantes , Humanos , Escherichia coli/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas Recombinantes/biossíntese , Temperatura
6.
Mycorrhiza ; 32(2): 177-191, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35194685

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, and the difficulty of growing them in asymbiotic or monoxenic (AMF + root) conditions limits research and their large-scale production as biofertilizer. We hypothesized that a combination of flavanols and strigolactones can mimic complex root signaling during the presymbiotic stages of AMF. We evaluated the germination, mycelial growth, branching, and auxiliary cell clusters formation by Gigaspora margarita during the presymbiotic stage in the presence (or absence) of transformed Cichorium intybus roots in basal culture medium enriched with glucose, a flavonol (quercetin or biochanin A) and a strigolactone analogue (1-Methyl-2-oxindole or indole propionic acid). With quercetin (5 µM), methyl oxindole (2.5 nM), and glucose (8.2 g/L) in the absence of roots, the presymbiotic mycelium of G. margarita grew without cytoplasmic retraction and produced auxiliary cells over 71 days similar to presymbiotic mycelium in the presence of roots but without glucose, strigolactones, and flavonols. Our results indicate that glucose and a specific combination of certain concentrations of a flavonol and a strigolactone might be used in asymbiotic or monoxenic liquid or semisolid cultures to stimulate AMF inoculant bioprocesses.


Assuntos
Micorrizas , Raízes de Plantas , Quercetina , Fungos , Germinação , Micélio , Oxindóis , Raízes de Plantas/metabolismo , Quercetina/metabolismo , Esporos , Simbiose
7.
Bioprocess Biosyst Eng ; 45(6): 1033-1045, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347387

RESUMO

The selection of highly recombinant protein (RP)-productive Chinese hamster ovary (CHO) cell lines is widely carried out in shake flasks. It is assumed that increases in the operating parameters in shake flasks lead to impairments in cell growth and RP production. These effects in cells metabolism are widely associated with high mass transfers and hydrodynamic stress. This study examined the impact of commonly used operational parameters on growth and specific productivity (qP) of two CHO cell lines differentially secreting a humanized anti-hIL8 monoclonal antibody (mAb) and cultured in 250 ml flasks. The evaluated parameters are filling volume (10, 15, and 20%), shaking frequency (60 and 120 revolutions per minute -rpm-), and orbital diameter (25.4 and 19 mm). The analysis of the oxygen transfer was done in terms of the measured volumetric mass transfer coefficient (kLa) and of the hydrodynamics in terms of power input per unit volume of liquid (P/V), the turbulent eddy length scale measured by the Kolmogorov's microscale of turbulence, the energy dissipation rate, the average shear stress, and the shear rate. Though almost all measured kinetic and stoichiometric parameters remained unchanged, mAb titer included, significant differences were found in maximum cell concentration, 10-45% higher in conditions with lower values of kLa and P/V. Changes in glucose metabolism contributing to qP were only shown in the higher producer cell line. Non-lethal responses to elevated oxygen transfer and shear stress might be present and must be considered when evaluating CHO cell cultures in shake flasks.


Assuntos
Reatores Biológicos , Oxigênio , Animais , Células CHO , Cricetinae , Cricetulus , Oxigênio/metabolismo , Proteínas Recombinantes
8.
Microb Cell Fact ; 20(1): 88, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888152

RESUMO

SARS-CoV-2 is a novel ß-coronavirus that caused the COVID-19 pandemic disease, which spread rapidly, infecting more than 134 million people, and killing almost 2.9 million thus far. Based on the urgent need for therapeutic and prophylactic strategies, the identification and characterization of antibodies has been accelerated, since they have been fundamental in treating other viral diseases. Here, we summarized in an integrative manner the present understanding of the immune response and physiopathology caused by SARS-CoV-2, including the activation of the humoral immune response in SARS-CoV-2 infection and therefore, the synthesis of antibodies. Furthermore, we also discussed about the antibodies that can be generated in COVID-19 convalescent sera and their associated clinical studies, including a detailed characterization of a variety of human antibodies and identification of antibodies from other sources, which have powerful neutralizing capacities. Accordingly, the development of effective treatments to mitigate COVID-19 is expected. Finally, we reviewed the challenges faced in producing potential therapeutic antibodies and nanobodies by cell factories at an industrial level while ensuring their quality, efficacy, and safety.


Assuntos
Anticorpos Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/virologia , Humanos , Imunidade Humoral , Imunidade Inata , Imunoglobulinas/química , Imunoglobulinas/uso terapêutico , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/uso terapêutico
9.
Microb Cell Fact ; 18(1): 200, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727078

RESUMO

The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.


Assuntos
Biocatálise , Poluentes Ambientais/metabolismo , Lacase , Biodegradação Ambiental , Ecossistema , Fungos/enzimologia , Lacase/química , Lacase/metabolismo , Plantas/enzimologia , Água/análise , Água/química , Purificação da Água
10.
Microb Cell Fact ; 18(1): 11, 2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30660186

RESUMO

BACKGROUND: Pichia pastoris (syn. Komagataella phaffii) is one of the most highly utilized eukaryotic expression systems for the production of heterologous glycoproteins, being able to perform both N- and O-mannosylation. In this study, we present the expression in P. pastoris of an O-mannosylated recombinant version of the 38 kDa glycolipoprotein PstS-1 from Mycobacterium tuberculosis (Mtb), that is similar in primary structure to the native secreted protein. RESULTS: The recombinant PstS-1 (rPstS-1) was produced without the native lipidation signal. Glycoprotein expression was under the control of the methanol-inducible promoter pAOX1, with secretion being directed by the α-mating factor secretion signal. Production of rPstS-1 was carried out in baffled shake flasks (BSFs) and controlled bioreactors. A production up to ~ 46 mg/L of the recombinant protein was achieved in both the BSFs and the bioreactors. The recombinant protein was recovered from the supernatant and purified in three steps, achieving a preparation with 98% electrophoretic purity. The primary and secondary structures of the recombinant protein were characterized, as well as its O-mannosylation pattern. Furthermore, a cross-reactivity analysis using serum antibodies from patients with active tuberculosis demonstrated recognition of the recombinant glycoprotein, indirectly indicating the similarity between the recombinant PstS-1 and the native protein from Mtb. CONCLUSIONS: rPstS-1 (98.9% sequence identity, O-mannosylated, and without tags) was produced and secreted by P. pastoris, demonstrating that this yeast is a useful cell factory that could also be used to produce other glycosylated Mtb antigens. The rPstS-1 could be used as a tool for studying the role of this molecule during Mtb infection, and to develop and improve vaccines or kits based on the recombinant protein for serodiagnosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Pichia/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Aldeído Oxidase/genética , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Reatores Biológicos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Glicosilação , Humanos , Pichia/crescimento & desenvolvimento , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Microb Cell Fact ; 17(1): 189, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486842

RESUMO

BACKGROUND: In Streptomyces, understanding the switch from primary to secondary metabolism is important for maximizing the production of secondary metabolites such as antibiotics, as well as for optimizing recombinant glycoprotein production. Differences in Streptomyces lividans bacterial aggregation as well as recombinant glycoprotein production and O-mannosylation have been reported due to modifications in the shake flask design. We hypothetized that such differences are related to the metabolic switch that occurs under oxygen-limiting conditions in the cultures. RESULTS: Shake flask design was found to affect undecylprodigiosin (RED, a marker of secondary metabolism) production; the RED yield was 12 and 385 times greater in conventional normal Erlenmeyer flasks (NF) than in baffled flasks (BF) and coiled flasks (CF), respectively. In addition, oxygen transfer rates (OTR) and carbon dioxide transfer rates were almost 15 times greater in cultures in CF and BF as compared with those in NF. Based on these data, we obtained respiration quotients (RQ) consistent with aerobic metabolism for CF and BF, but an RQ suggestive of anaerobic metabolism for NF. CONCLUSION: Although the metabolic switch is usually related to limitations in phosphate and nitrogen in Streptomyces sp., our results reveal that it can also be activated by low OTR, dramatically affecting recombinant glycoprotein production and O-mannosylation and increasing RED synthesis in the process.


Assuntos
Reatores Biológicos/microbiologia , Oxigênio/farmacologia , Recombinação Genética/genética , Streptomyces lividans/metabolismo , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Prodigiosina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Streptomyces lividans/efeitos dos fármacos , Streptomyces lividans/crescimento & desenvolvimento
12.
Microb Cell Fact ; 16(1): 129, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743267

RESUMO

BACKGROUND: Shake flasks are widely used during the development of bioprocesses for recombinant proteins. Cultures of recombinant Escherichia coli with orbital mixing (OM) have an oxygen limitation negatively affecting biomass growth and recombinant-protein production. With the aim to improve mixing and aeration in shake flask cultures, we analyzed cultures subjected to OM and the novel resonant acoustic mixing (RAM) by applying acoustic energy to E. coli BL21-Gold (DE3): a producer of recombinant phospholipase A2 (rPLA2) from Micrurus laticollaris snake venom. RESULTS: Comparing OM with RAM (200 rpm vs. 7.5g) at the same initial volumetric oxygen transfer coefficient (kLa ≈ 80 h-1) ~69% less biomass was obtained with OM compared with RAM. We analyzed two more conditions increasing agitation until maximal speed (12.5 and 20g), and ~1.6- and ~1.4-fold greater biomass was obtained as compared with cultures at 7.5g. Moreover, the specific growth rate was statistically similar in all cultures carried out in RAM, but ~1.5-fold higher than that in cultures carried out under OM. Almost half of the glucose was consumed in OM, whereas between 80 and 100% of the glucose was consumed in RAM cultures, doubling biomass per glucose yields. Differential organic acid production was observed, but acetate production was prevented at the maximal RAM (20g). The amount of rPLA2 in both, OM and RAM cultures, represented 38 ± 5% of the insoluble protein. A smaller proportion of α-helices and ß-sheet of purified inclusion bodies (IBs) were appreciated by ATR-FTIR from cultures carried out under OM, than those from RAM. At maximal agitation by RAM, internal E. coli localization patterns of protein aggregation changed, as well as, IBs proteolytic degradation, in conjunction with the formation of small external vesicles, although these changes did not significantly affect the cell survival response. CONCLUSIONS: In moderate-cell-density recombinant E. coli BL21-Gold (DE3) cultures, the agitation increases in RAM (up to the maximum) was not enough to avoid the classical oxygen limitation that happens in OM shake flasks. However, RAM presents a decrease of oxygen limitation, resulting in a favorable effect on biomass growth and volumetric rPLA2 production. While under OM a higher recombinant protein yield was obtained.


Assuntos
Escherichia coli/metabolismo , Oxigênio/metabolismo , Fosfolipases A2/metabolismo , Técnicas de Cultura Celular por Lotes , Escherichia coli/crescimento & desenvolvimento , Glucose/metabolismo , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Cinética , Microscopia Eletrônica de Transmissão , Fosfolipases A2/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
13.
Microb Cell Fact ; 13: 137, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25213001

RESUMO

BACKGROUND: Inclusion bodies (IBs) are aggregated proteins that form clusters when protein is overexpressed in heterologous expression systems. IBs have been considered as non-usable proteins, but recently they are being used as functional materials, catalytic particles, drug delivery agents, immunogenic structures, and as a raw material in recombinant therapeutic protein purification. However, few studies have been made to understand how culture conditions affect the protein aggregation and the physicochemical characteristics that lead them to cluster. The objective of our research was to understand how pH affects the physicochemical properties of IBs formed by the recombinant sphingomyelinase-D of tick expressed in E. coli BL21-Gold (DE3) by evaluating two pH culture strategies. RESULTS: Uncontrolled pH culture conditions favored recombinant sphingomyelinase-D aggregation and IB formation. The IBs of sphingomyelinase-D produced under controlled pH at 7.5 and after 24 h were smaller (<500 nm) than those produced under uncontrolled pH conditions (>500 nm). Furthermore, the composition, conformation and ß-structure formation of the aggregates were different. Under controlled pH conditions in comparison to uncontrolled conditions, the produced IBs presented higher resistance to denaturants and proteinase-K degradation, presented ß-structure, but apparently as time passes the IBs become compacted and less sensitive to amyloid dye binding. CONCLUSIONS: The manipulation of the pH has an impact on IB formation and their physicochemical characteristics. Particularly, uncontrolled pH conditions favored the protein aggregation and sphingomyelinase-D IB formation. The evidence may lead to find methodologies for bioprocesses to obtain biomaterials with particular characteristics, extending the application possibilities of the inclusion bodies.


Assuntos
Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Diester Fosfórico Hidrolases/biossíntese , Proteínas Recombinantes/biossíntese , Animais , Benzotiazóis , Biomassa , Vermelho Congo/metabolismo , Endopeptidase K/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Guanidina/farmacologia , Concentração de Íons de Hidrogênio , Corpos de Inclusão/ultraestrutura , Cinética , Solubilidade , Espectrometria de Fluorescência , Tiazóis/metabolismo , Carrapatos/enzimologia
14.
Appl Microbiol Biotechnol ; 97(22): 9665-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24061414

RESUMO

Azospirillum brasilense has industrial significance as a growth promoter in plants of commercial interest. However, there is no report in the literature disclosing a liquid product produced in pilot-scale bioreactors and is able to be stored at room temperature for more than 2 years. The aim of this work was to scale up a process from a shake flask to a 10-L lab-scale and 1,000-L pilot-scale bioreactor for the production of plant growth-promoting bacterium A. brasilense for a liquid inoculant formulation. Furthermore, this work aimed to determine the shelf life of the liquid formulation stored at room temperature and to increase maize crops yield in greenhouses. Under a constant oxygen mass transfer coefficient (K L a), a fermentation process was successfully scaled up from shake flasks to 10- and 1,000-L bioreactors. A concentration ranging from 3.5 to 7.5 × 10(8) CFU/mL was obtained in shake flasks and bioreactors, and after 2 years stored at room temperature, the liquid formulation showed one order of magnitude decrease. Applications of the cultured bacteria in maize yields resulted in increases of up to 95 % in corncobs and 70 % in aboveground biomass.


Assuntos
Azospirillum brasilense/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Carga Bacteriana , Contagem de Colônia Microbiana , Preservação Biológica/métodos , Fatores de Tempo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
15.
World J Microbiol Biotechnol ; 29(8): 1421-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23475258

RESUMO

Culture conditions in shake flasks affect filamentous Streptomyces lividans morphology, as well the productivity and O-mannosylation of recombinant Ala-Pro-rich O-glycoprotein (known as the 45/47 kDa or APA antigen) from Mycobacterium tuberculosis. In order to scale up from previous reported shake flasks to bioreactor, data from the literature on the effect of agitation on morphology of Streptomyces strains were used to obtain gassed volumetric power input values that can be used to obtain a morphology of S. lividans in bioreactor similar to the morphology previously reported in coiled/baffled shake flasks by our group. Morphology of S. lividans was successfully scaled-up, obtaining similar mycelial sizes in both scales with diameters of 0.21 ± 0.09 mm in baffled and coiled shake flasks, and 0.15 ± 0.01 mm in the bioreactor. Moreover, the specific growth rate was successfully scaled up (0.09 ± 0.02 and 0.12 ± 0.01 h(-1), for bioreactors and flasks, respectively), and the recombinant protein productivity measured by densitometry, as well. More interestingly, the quality of the recombinant glycoprotein measured as the amount of mannoses attached to the C-terminal of APA was also scaled- up; with up to five mannose residues in cultures carried out in shake flasks; and six in the bioreactor. However, final biomass concentration was not similar, indicating that although the process can be scaled-up using the power input, others factors like oxygen transfer rate, tip speed or energy dissipation/circulation function can be an influence on bacterial metabolism.


Assuntos
Proteínas de Bactérias/biossíntese , Reatores Biológicos/microbiologia , Glicoproteínas/biossíntese , Microbiologia Industrial/métodos , Mycobacterium tuberculosis/genética , Streptomyces lividans/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/metabolismo , Glicoproteínas/genética , Microbiologia Industrial/instrumentação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Streptomyces lividans/citologia , Streptomyces lividans/genética
16.
Methods Mol Biol ; 2617: 17-30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656514

RESUMO

The temperature-inducible λpL/pR-cI857 expression system has been widely used to produce recombinant proteins (RPs), especially when it is necessary to avoid the addition of exogenous materials to induce the expression of recombinant genes, preventing contamination of bioprocesses. The temperature increase favors the formation of inclusion bodies (IBs). The temperature upshift could change the metabolism, productivities, cell viability, IBs architecture, and the host cell proteins inside IBs, affecting downstream to obtain the final product. In this contribution, we focus on the relationship between the bioprocesses using temperature increase as inducer, the heat shock response associated with temperature up-shift, the RP accumulation, and the formation of IBs. Here, we describe how to produce IBs and how culture conditions can modulate the composition and architecture of IBs by modifying the induction temperature in RP production.


Assuntos
Escherichia coli , Corpos de Inclusão , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/biossíntese , Temperatura
17.
PLoS One ; 17(11): e0277620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374852

RESUMO

Low temperature and sodium butyrate (NaBu) are two of the most used productivity-enhancing strategies in CHO cell cultures during biopharmaceutical manufacturing. While these two approaches alter the balance in the reciprocal relationship between cell growth and productivity, we do not fully understand their mechanisms of action beyond a gross cell growth inhibition. Here, we used continuous culture to evaluate the differential effect of low temperature and NaBu supplementation on CHO cell performance and gene expression profile. We found that an increase in cell-productivity under growth-inhibiting conditions was associated with the arrest of cells in the G1/G0 phase. A transcriptome analysis revealed that the molecular mechanisms by which low temperature and NaBu arrested cell cycle in G1/G0 differed from each other through the deregulation of different cell cycle checkpoints and regulators. The individual transcriptome changes in pattern observed in response to low temperature and NaBu were retained when these two strategies were combined, leading to an additive effect in arresting the cell cycle in G1/G0 phase. The findings presented here offer novel molecular insights about the cell cycle regulation during the CHO cell bioprocessing and its implications for increased recombinant protein production. This data provides a background for engineering productivity-enhanced CHO cell lines for continuous manufacturing.


Assuntos
Técnicas de Cultura de Células , Cricetinae , Animais , Células CHO , Fase de Repouso do Ciclo Celular , Cricetulus , Proteínas Recombinantes/metabolismo , Ciclo Celular
18.
Antibiotics (Basel) ; 11(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35625201

RESUMO

With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic ß subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the ß subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.

19.
Microb Cell Fact ; 10: 110, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185589

RESUMO

BACKGROUND: The Ala-Pro-rich O-glycoprotein known as the 45/47 kDa or APA antigen from Mycobacterium tuberculosis is an immunodominant adhesin restricted to mycobacterium genus and has been proposed as an alternative candidate to generate a new vaccine against tuberculosis or for diagnosis kits. In this work, the recombinant O-glycoprotein APA was produced by the non-pathogenic filamentous bacteria Streptomyces lividans, evaluating three different culture conditions. This strain is known for its ability to produce heterologous proteins in a shorter time compared to M. tuberculosis. RESULTS: Three different shake flask geometries were used to provide different shear and oxygenation conditions; and the impact of those conditions on the morphology of S. lividans and the production of rAPA was characterized and evaluated. Small unbranched free filaments and mycelial clumps were found in baffled and coiled shake flasks, but one order of magnitude larger pellets were found in conventional shake flasks. The production of rAPA is around 3 times higher in small mycelia than in larger pellets, most probably due to difficulties in mass transfer inside pellets. Moreover, there are four putative sites of O-mannosylation in native APA, one of which is located at the carboxy-terminal region. The carbohydrate composition of this site was determined for rAPA by mass spectrometry analysis, and was found to contain different glycoforms depending on culture conditions. Up to two mannoses residues were found in cultures carried out in conventional shake flasks, and up to five mannoses residues were determined in coiled and baffled shake flasks. CONCLUSIONS: The shear and/or oxygenation parameters determine the bacterial morphology, the productivity, and the O-mannosylation of rAPA in S. lividans. As demonstrated here, culture conditions have to be carefully controlled in order to obtain recombinant O-glycosylated proteins with similar "quality" in bacteria, particularly, if the protein activity depends on the glycosylation pattern. Furthermore, it will be an interesting exercise to determine the effect of shear and oxygen in shake flasks, to obtain evidences that may be useful in scaling-up these processes to bioreactors. Another approach will be using lab-scale bioreactors under well-controlled conditions, and study the impact of those on rAPA productivity and quality.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Expressão Gênica , Glicoproteínas/metabolismo , Mycobacterium tuberculosis/genética , Streptomyces lividans/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes/instrumentação , Glicoproteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/crescimento & desenvolvimento
20.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33844837

RESUMO

Recombinant protein (RP) production from Escherichia coli has been extensively studied to find strategies for increasing product yields. The thermoinducible expression system is commonly employed at the industrial level to produce various RPs, which avoids the addition of chemical inducers, thus minimizing contamination risks. Multiple aspects of the molecular origin and biotechnological uses of its regulatory elements (pL/pR promoters and cI857 thermolabile repressor) derived from bacteriophage λ provide knowledge to improve the bioprocesses using this system. Here, we discuss the main aspects of the potential use of the λpL/pR-cI857 thermoinducible system for RP production in E. coli, focusing on the approaches of investigations that have contributed to the advancement of this expression system. Metabolic and physiological changes that occur in the host cells caused by heat stress and RP overproduction are also described. Therefore, the current scenario and the future applications of systems that use heat to induce RP production are discussed to understand the relationship between the activation of the bacterial heat shock response, RP accumulation and its possible aggregation to form inclusion bodies.


Assuntos
Escherichia coli , Proteínas Recombinantes , Bacteriófago lambda/genética , Escherichia coli/genética , Corpos de Inclusão , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa