Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1137, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914625

RESUMO

Ecosystem connectivity tends to increase the resilience and function of ecosystems responding to stressors. Coastal ecosystems sequester disproportionately large amounts of carbon, but rapid exchange of water, nutrients, and sediment makes them vulnerable to sea level rise and coastal erosion. Individual components of the coastal landscape (i.e., marsh, forest, bay) have contrasting responses to sea level rise, making it difficult to forecast the response of the integrated coastal carbon sink. Here we couple a spatially-explicit geomorphic model with a point-based carbon accumulation model, and show that landscape connectivity, in-situ carbon accumulation rates, and the size of the landscape-scale coastal carbon stock all peak at intermediate sea level rise rates despite divergent responses of individual components. Progressive loss of forest biomass under increasing sea level rise leads to a shift from a system dominated by forest biomass carbon towards one dominated by marsh soil carbon that is maintained by substantial recycling of organic carbon between marshes and bays. These results suggest that climate change strengthens connectivity between adjacent coastal ecosystems, but with tradeoffs that include a shift towards more labile carbon, smaller marsh and forest extents, and the accumulation of carbon in portions of the landscape more vulnerable to sea level rise and erosion.

2.
Sci Rep ; 9(1): 5795, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962472

RESUMO

Marsh edge retreat by wave erosion, an ubiquitous process along estuaries, could affect vegetation dynamics in ways that differ from well-established elevation-driven interactions. Along the marshes of Delaware Bay (USA) we show that species composition from marsh edge to interior is driven by gradients in wave stress, bed elevation, and sediment deposition. At the marsh edge, large wave stress allows only short-statured species. Approximately 17m landward, decreasing wave stress and increasing deposition cause the formation of a ridge. There, high marsh fugitive and shrub species prevails. Both the marsh edge and the ridge retreat synchronously by several meters per year causing wave energy and deposition to change rapidly. Yet, the whole ecogeomorphologic profile translates landward in a dynamic equilibrium, where the low marsh replaces the high marsh ridge community and the high marsh ridge community replaces the mid-marsh grasses on the marsh plain. A plant competition model shows that the disturbances associated with sediment deposition are necessary for the high marsh species to outcompete the mid-marsh grasses during rapid transgression. Marsh retreat creates a moving framework of physical gradients and disturbances that promote the co-existence of over ten different species adjacent to the marsh edge in an otherwise species-poor landscape.


Assuntos
Biodiversidade , Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Espécies Introduzidas , Poaceae/fisiologia , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa