Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Immunol ; 21(10): 1232-1243, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32929275

RESUMO

The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.


Assuntos
Antígenos CD2/metabolismo , Antígenos CD58/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Sinapses Imunológicas/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Adesão Celular , Células Cultivadas , Humanos , Tolerância Imunológica , Ativação Linfocitária , Ligação Proteica , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Análise de Célula Única
3.
Proc Natl Acad Sci U S A ; 120(6): e2211368120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730202

RESUMO

Ligation of T cell receptor (TCR) to peptide-MHC (pMHC) complexes initiates signaling leading to T cell activation and TCR ubiquitination. Ubiquitinated TCR is then either internalized by the T cell or released toward the antigen-presenting cell (APC) in extracellular vesicles. How these distinct fates are orchestrated is unknown. Here, we show that clathrin is first recruited to TCR microclusters by HRS and STAM2 to initiate release of TCR in extracellular vesicles through clathrin- and ESCRT-mediated ectocytosis directly from the plasma membrane. Subsequently, EPN1 recruits clathrin to remaining TCR microclusters to enable trans-endocytosis of pMHC-TCR conjugates from the APC. With these results, we demonstrate how clathrin governs bidirectional membrane exchange at the immunological synapse through two topologically opposite processes coordinated by the sequential recruitment of ecto- and endocytic adaptors. This provides a scaffold for direct two-way communication between T cells and APCs.


Assuntos
Clatrina , Sinapses Imunológicas , Clatrina/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T , Ativação Linfocitária
4.
Biophys J ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596785

RESUMO

Formation of the immunological synapse (IS) is a key event during initiation of an adaptive immune response to a specific antigen. During this process, a T cell and an antigen presenting cell form a stable contact that allows the T cell to integrate both internal and external stimuli in order to decide whether to activate. The threshold for T cell activation depends on the strength and frequency of the calcium (Ca2+) signaling induced by antigen recognition, and it must be tightly regulated to avoid undesired harm to healthy cells. Potassium (K+) channels are recruited to the IS to maintain the negative membrane potential required to sustain Ca2+ entry. However, the precise localization of K+ channels within the IS remains unknown. Here, we visualized the dynamic subsynaptic distribution of Kv1.3, the main voltage-gated potassium channel in human T cells. Upon T cell receptor engagement, Kv1.3 polarized toward the synaptic cleft and diffused throughout the F-actin rich distal compartment of the synaptic interface-an effect enhanced by CD2-CD58 corolla formation. As the synapse matured, Kv1.3 clusters were internalized at the center of the IS and released in extracellular vesicles. We propose a model in which specific distribution of Kv1.3 within the synapse indirectly regulates the channel function and that this process is limited through Kv1.3 internalization and release in extracellular vesicles.

5.
Nature ; 547(7663): 318-323, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28700579

RESUMO

Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (TFH) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human TFH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. TFH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human TFH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.


Assuntos
Linfócitos B/imunologia , Dopamina/metabolismo , Centro Germinativo/imunologia , Sinapses Imunológicas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Ligante de CD40/metabolismo , Criança , Cromogranina B/metabolismo , Feminino , Centro Germinativo/citologia , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Camundongos , Modelos Imunológicos , Neurotransmissores/metabolismo , Vesículas Secretórias/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Regulação para Cima
6.
Proc Natl Acad Sci U S A ; 110(6): 2140-5, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23341604

RESUMO

YiiP is a dimeric Zn(2+)/H(+) antiporter from Escherichia coli belonging to the cation diffusion facilitator family. We used cryoelectron microscopy to determine a 13-Å resolution structure of a YiiP homolog from Shewanella oneidensis within a lipid bilayer in the absence of Zn(2+). Starting from the X-ray structure in the presence of Zn(2+), we used molecular dynamics flexible fitting to build a model consistent with our map. Comparison of the structures suggests a conformational change that involves pivoting of a transmembrane, four-helix bundle (M1, M2, M4, and M5) relative to the M3-M6 helix pair. Although accessibility of transport sites in the X-ray model indicates that it represents an outward-facing state, our model is consistent with an inward-facing state, suggesting that the conformational change is relevant to the alternating access mechanism for transport. Molecular dynamics simulation of YiiP in a lipid environment was used to address the feasibility of this conformational change. Association of the C-terminal domains is the same in both states, and we speculate that this association is responsible for stabilizing the dimer that, in turn, may coordinate the rearrangement of the transmembrane helices.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Homologia de Sequência de Aminoácidos , Shewanella/genética , Shewanella/metabolismo , Zinco/metabolismo
7.
Nat Chem Biol ; 8(10): 862-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941046

RESUMO

Cardiolipin is a mitochondrial phospholipid with a characteristic acyl chain composition that depends on the function of tafazzin, a phospholipid-lysophospholipid transacylase, although the enzyme itself lacks acyl specificity. We incubated isolated tafazzin with various mixtures of phospholipids and lysophospholipids, characterized the lipid phase by (31)P-NMR and measured newly formed molecular species by MS. Substantial transacylation was observed only in nonbilayer lipid aggregates, and the substrate specificity was highly sensitive to the lipid phase. In particular, tetralinoleoyl-cardiolipin, a prototype molecular species, formed only under conditions that favor the inverted hexagonal phase. In isolated mitochondria, <1% of lipids participated in transacylations, suggesting that the action of tafazzin was limited to privileged lipid domains. We propose that tafazzin reacts with non-bilayer-type lipid domains that occur in curved or hemifused membrane zones and that acyl specificity is driven by the packing properties of these domains.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Proteínas de Drosophila/metabolismo , Metabolismo dos Lipídeos , Acilação , Animais , Drosophila , Bicamadas Lipídicas , Micelas , Ressonância Magnética Nuclear Biomolecular , Especificidade por Substrato
8.
Nat Commun ; 15(1): 3173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609390

RESUMO

Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Actinas , Linfócitos T CD8-Positivos , Citoesqueleto , Semaforina-3A/genética
9.
J Extracell Biol ; 2(3): e74, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38938417

RESUMO

CD8+ T lymphocytes play vital roles in killing infected or deranged host cells, recruiting innate immune cells, and regulating other aspects of immune responses. Like any other cell, CD8+ T cells also produce extracellular particles. These include extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs). T cell-derived EVs are proposed to mediate cell-to-cell signalling, especially in the context of inflammatory responses, autoimmunity, and infectious diseases. CD8+ T cells also produce supramolecular attack particles (SMAPs), which are in the same size range as EVs and mediate a component of T cell mediated killing. The isolation technique selected will have a profound effect on yield, purity, biochemical properties and function of T cell-derived particles; making it important to directly compare different approaches. In this study, we compared commonly used techniques (membrane spin filtration, ultracentrifugation, or size exclusion liquid chromatography) to isolate particles from activated human CD8+ T cells and validated our results by single-particle methods, including nanoparticle tracking analysis, flow cytometry, electron microscopy and super-resolution microscopy of the purified sample as well as bulk proteomics and lipidomics analyses to evaluate the quality and nature of enriched T cell-derived particles. Our results show that there is a trade-off between the yield and the quality of T cell-derived particles. Furthermore, the protein and lipid composition of the particles is dramatically impacted by the isolation technique applied. We conclude that from the techniques evaluated, size exclusion liquid chromatography offers the highest quality of T cell derived EVs and SMAPs with acceptable yields for compositional and functional studies.

10.
Nat Cell Biol ; 24(10): 1461-1474, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109671

RESUMO

The common view is that T lymphocytes activate telomerase to delay senescence. Here we show that some T cells (primarily naïve and central memory cells) elongated telomeres by acquiring telomere vesicles from antigen-presenting cells (APCs) independently of telomerase action. Upon contact with these T cells, APCs degraded shelterin to donate telomeres, which were cleaved by the telomere trimming factor TZAP, and then transferred in extracellular vesicles at the immunological synapse. Telomere vesicles retained the Rad51 recombination factor that enabled telomere fusion with T-cell chromosome ends lengthening them by an average of ~3,000 base pairs. Thus, there are antigen-specific populations of T cells whose ageing fate decisions are based on telomere vesicle transfer upon initial contact with APCs. These telomere-acquiring T cells are protected from senescence before clonal division begins, conferring long-lasting immune protection.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Memória Imunológica , Linfócitos T/metabolismo , Telômero/genética , Telômero/metabolismo , Senescência Celular/genética
11.
Nat Commun ; 13(1): 3460, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710644

RESUMO

The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.


Assuntos
Ligante de CD40 , Vesículas Extracelulares , Ligante de CD40/metabolismo , Vesículas Extracelulares/metabolismo , Sinapses Imunológicas , Vesículas Sinápticas , Linfócitos T
12.
iScience ; 24(10): 103100, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622155

RESUMO

Small immunoglobulin superfamily (sIGSF) adhesion complexes form a corolla of microdomains around an integrin ring and secretory core during immunological synapse (IS) formation. The corolla recruits and retains major costimulatory/checkpoint complexes, such as CD28, making forces that govern corolla formation of particular interest. Here, we investigated the mechanisms underlying molecular reorganization of CD2, an adhesion and costimulatory molecule of the sIGSF family during IS formation. Computer simulations showed passive distal exclusion of CD2 complexes under weak interactions with the ramified F-actin transport network. Attractive forces between CD2 and CD28 complexes relocate CD28 from the IS center to the corolla. Size-based sorting interactions with large glycocalyx components, such as CD45, or short-range CD2 self-attraction successfully explain the corolla 'petals.' This establishes a general simulation framework for complex pattern formation observed in cell-bilayer and cell-cell interfaces, and the suggestion of new therapeutic targets, where boosting or impairing characteristic pattern formation can be pivotal.

13.
Front Cell Dev Biol ; 9: 673446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368126

RESUMO

The Jurkat E6.1 clone has been extensively used as a powerful tool for the genetic and biochemical dissection of the TCR signaling pathway. More recently, these cells have been exploited in imaging studies to identify key players in immunological synapse (IS) assembly in superantigen-specific conjugates and to track the dynamics of signaling molecules on glass surfaces coated with activating anti-CD3 antibodies. By comparison, Jurkat cells have been used only scantily for imaging on supported lipid bilayers (SLBs) incorporating laterally mobile TCR and integrin ligands, which allow to study synaptic rearrangements of surface molecules and the fine architecture of the mature IS, likely due to limitations in the assembly of immune synapses with well-defined architecture. Here we have explored whether upregulating the low levels of endogenous LFA-1 expression on Jurkat E6.1 cells through transduction with CD11a- and CD18-encoding lentiviruses can improve IS architecture. We show that, while forced LFA-1 expression did not affect TCR recruitment to the IS, E6.1 LFA-1 high cells assembled better structured synapses, with a tighter distribution of signaling-competent TCRs at the center of the IS. LFA-1 upregulation enhanced protein phosphotyrosine signaling on SLBs but not at the IS formed in conjugates with SEE-pulsed APCs, and led to the constitutive formation of an intracellular phosphotyrosine pool co-localizing with endosomal CD3ζ. This was paralleled by an increase in the levels of p-ZAP-70 and p-Erk both under basal conditions and following activation, and in enhanced Ca2+ mobilization from intracellular stores. The enhancement in early signaling E6.1 LFA-1 high cells did not affect expression of the early activation marker CD69 but led to an increase in IL-2 expression. Our results highlight a new role for LFA-1 in the core architecture of the IS that can be exploited to study the spatiotemporal redistribution of surface receptors on SLBs, thereby extending the potential of E6.1 cells and their derivatives for fine-scale imaging studies.

14.
Elife ; 82019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31469364

RESUMO

Planar supported lipid bilayers (PSLB) presenting T cell receptor (TCR) ligands and ICAM-1 induce budding of extracellular microvesicles enriched in functional TCR, defined here as synaptic ectosomes (SE), from helper T cells. SE bind peptide-MHC directly exporting TCR into the synaptic cleft, but incorporation of other effectors is unknown. Here, we utilized bead supported lipid bilayers (BSLB) to capture SE from single immunological synapses (IS), determined SE composition by immunofluorescence flow cytometry and enriched SE for proteomic analysis by particle sorting. We demonstrate selective enrichment of CD40L and ICOS in SE in response to addition of CD40 and ICOSL, respectively, to SLB presenting TCR ligands and ICAM-1. SE are enriched in tetraspanins, BST-2, TCR signaling and ESCRT proteins. Super-resolution microscopy demonstrated that CD40L is present in microclusters within CD81 defined SE that are spatially segregated from TCR/ICOS/BST-2. CD40L+ SE retain the capacity to induce dendritic cell maturation and cytokine production.


Assuntos
Ligante de CD40/análise , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Receptores de Antígenos/análise , Linfócitos T Auxiliares-Indutores/metabolismo , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Proteoma/análise
16.
Methods Mol Biol ; 1584: 423-441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255717

RESUMO

Supported lipid bilayers (SLB) formed on glass substrates have been a useful tool for study of immune cell signaling since the early 1980s. The mobility of lipid-anchored proteins in the system, first described for antibodies binding to synthetic phospholipid head groups, allows for the measurement of two-dimensional binding reactions and signaling processes in a single imaging plane over time or for fixed samples. The fragility of SLB and the challenges of building and validating individual substrates limit most experimenters to ~10 samples per day, perhaps increasing this few-fold when examining fixed samples. Successful experiments might then require further days to fully analyze. We present methods for automation of many steps in SLB formation, imaging in 96-well glass bottom plates, and analysis that enables >100-fold increase in throughput for fixed samples and wide-field fluorescence. This increased throughput will allow better coverage of relevant parameters and more comprehensive analysis of aspects of the immunological synapse that are well reconstituted by SLB.


Assuntos
Linfócitos T CD4-Positivos/química , Sinapses Imunológicas/química , Bicamadas Lipídicas/química , Linfócitos T CD4-Positivos/imunologia , Humanos , Sinapses Imunológicas/imunologia , Bicamadas Lipídicas/imunologia
17.
J Cell Biol ; 216(4): 1123-1141, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28289091

RESUMO

Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration.


Assuntos
Macrófagos/metabolismo , Membranas/metabolismo , Receptores de IgG/metabolismo , Receptores Imunológicos/metabolismo , Citoesqueleto de Actina/metabolismo , Antígeno CD47/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Fagocitose/fisiologia , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa