RESUMO
The field of DNA methylation research is rapidly evolving, focusing on disease and phenotype changes over time using methylation measurements from diverse tissue sources and multiple array platforms. Consequently, identifying the extent of longitudinal, inter-tissue, and inter-platform variation in DNA methylation is crucial for future advancement. DNA methylation was measured in 375 individuals, with 197 of those having 2 blood sample measurements ~10 years apart. Whole-blood samples were measured on Illumina Infinium 450K and EPIC methylation arrays, and buccal samples from a subset of 58 participants were measured on EPIC array. The data were analyzed with the aims to examine the correlation between methylation levels in longitudinal blood samples in 197 individuals, examine the correlation between methylation levels in the blood and buccal samples in 58 individuals, and examine the correlation between blood methylation profiles assessed on the EPIC and 450K arrays in 83 individuals. We identified 136,833, 7674, and 96,891 CpGs significantly and strongly correlated (>0.50) longitudinally, across blood and buccal samples as well as array platforms, respectively. A total of 3674 of these CpGs were shared across all three sets. Analysis of these shared CpGs identified previously found associations with aging, ancestry, and 7016 mQTLs as well.
Assuntos
Envelhecimento , Metilação de DNA , Humanos , Estudos Transversais , Ilhas de CpG , Epigênese GenéticaRESUMO
INTRODUCTION: During the coronavirus disease 2019 (COVID-19) pandemic, real-time reverse transcription polymerase chain reaction (RT-PCR) became an essential tool for laboratories to provide high-sensitivity qualitative diagnostic testing for patients and real-time data to public health officials. Here we explore the predictive value of quantitative data from RT-PCR cycle threshold (Ct) values in epidemiological measures, symptom presentation, and variant transition. METHODS: To examine the association with hospitalizations and deaths, data from 74,479 patients referred to the Avera Institute for Human Genetics (AIHG) for COVID-19 testing in 2020 were matched by calendar week to epidemiological data reported by the South Dakota Department of Health. We explored the association between symptom data, patient age, and Ct values for 101 patients. We also explored changes in Ct values during variant transition detected by genomic surveillance sequencing of the AIHG testing population during 2021. RESULTS: Measures from AIHG diagnostic testing strongly explain variance in the South Dakota state positivity percentage (R2 = 0.758), a two-week delay in hospitalizations (R2 = 0.856), and a four-week delay in deaths (R2 = 0.854). Based on factor analysis of patient symptoms, three groups could be distinguished which had different presentations of age, Ct value, and time from collection. Additionally, conflicting Ct value results among SARSCoV- 2 variants during variant transition may reflect the community transmission dynamics. CONCLUSIONS: Measures of Ct value in RT-PCR diagnostic assays combined with routine screening have valuable applications in monitoring the dynamics of SARS-CoV-2 within communities.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Hospitalização , PandemiasRESUMO
Breast cancer (BC) is a complex disease affecting one in eight women in the USA. Advances in population genomics have led to the development of polygenic risk scores (PRSs) with the potential to augment current risk models, but replication is often limited. We evaluated 2 robust PRSs with 313 and 3820 SNPs and the effects of multiple genotype imputation replications in BC cases and control populations. Biological samples from BC cases and cancer-free controls were drawn from three European ancestry cohorts. Genotyping on the Illumina Global Screening Array was followed by stringent quality control measures and 20 genotype imputation replications. A total of 468 unrelated cases and 4337 controls were scored, revealing significant differences in mean PRS percentiles between cases and controls (p < 0.001) for both SNP sets (313-SNP PRS: 52.81 and 48.07; 3820-SNP PRS: 55.45 and 49.81), with receiver operating characteristic curve analysis showing area under the curve values of 0.596 and 0.603 for the 313-SNP and 3820-SNP PRS, respectively. PRS fluctuations (from ~2-3% up to 9%) emerged across imputation iterations. Our study robustly reaffirms the predictive capacity of PRSs for BC by replicating their performance in an independent BC population and showcases the need to average imputed scores for reliable outcomes.
RESUMO
Background: Asthma, a complex respiratory disease, presents with inflammatory symptoms in the lungs, blood, and other tissues. We investigated the relationship between DNA methylation and 35 clinical markers of asthma. The Illumina Infinium EPIC v1 methylation array was used to evaluate 742,442 CpGs in whole blood samples from 319 participants. They were part of the Netherlands Twin Register from families with at least one member suffering from severe asthma. Repeat blood samples were taken after 10 years from 182 of these individuals. Principal component analysis (PCA) on the clinical markers yielded ten principal components (PCs) that explained 92.8% of the total variance. We performed epigenome-wide association studies (EWAS) for each of the ten PCs correcting for familial structure and other covariates. Results: 221 unique CpGs reached genome-wide significance at timepoint 1 (T1) after Bonferroni correction. PC7 accounted for the majority of associations (204), which correlated with loadings of eosinophil counts and immunoglobulin levels. Enrichment analysis via the EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with epigenetic data at a second timepoint (T2) identified 49 significant CpGs. EWAS Atlas enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-related traits. Comparing the estimates of all the significant associations identified across the two time points (271 in total) yielded a correlation of 0.81. Conclusion: We identified 270 unique CpGs that were associated with PC scores generated from 35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was present between effect sizes at the 2 timepoints. Most associations were identified for PC7, which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs have previous associations in earlier studies of asthma and asthma-related traits. The results point to using this robust DNA methylation profile as a new, stable biomarker for asthma.
RESUMO
The field of population genetics has exploded in the last two decades following the sequencing of the human genome in 2001 (Green et al. Nature 526:29-31, 2015). Tools to measure genetic variation have matured significantly throughout this advancement in knowledge (Lenoir and Giannella. J Biomed Discov Collab 1:11, 2006; Marzancola et al. Methods Mol Biol 1368:161-178, 2016). In this chapter, the focus is on the laboratory methods developed to perform genome-wide genotyping utilizing DNA microarrays, which is one of the most commonly used molecular techniques to assess global genetic variation (Heller MJ, Annu Rev Biomed Eng 4:129-153, 2002). DNA microarrays allow for the interrogation of hundreds of thousands of SNPs (single nucleotide polymorphisms) at once utilizing array-based technology in conjunction with fluorescent molecular labels in a process referred to as genotyping (Marzancola et al. Methods Mol Biol 1368:161-178, 2016). Genotype data can be utilized to associate certain phenotypes in relation with specific genetic variants within a population in a process known as genome-wide association studies or GWAS (Charlesworth and Charlesworth. Heredity (Edinb) 118(1):2-9, 2017; Casillas and Barbadilla. Genetics 205(3):1003-1035, 2017). This experimental technique is a multiple-day process involving the combination of DNA extraction, amplification, fragmentation, binding, and staining (Illumina Infinium HTS Assay Protocol Guide, 2013). Many vendors supply platforms and products to assess global genetic variation using DNA microarrays (Illumina Infinium HTS Assay Protocol Guide, 2013). In this chapter, the focus is on the methods utilized to generate high-quality genotype data with the Illumina® Infinium Global Screening Array. Although data analysis and quality control are not the focus for this chapter, they are also briefly addressed.