Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chemistry ; 30(4): e202302930, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37926677

RESUMO

New synthesized bipyrimidine-based chromophores presenting alkoxystyryl donor groups carrying aliphatic achiral and chiral chains in the 4 position, connected to electron-accepting 2,2-bipyrimidine cores have been synthesized. Their linear and nonlinear optical (NLO) properties were investigated as well as their mesomorphic properties by various techniques (light-transmission measurements, polarized-light optical microscopy, differential scanning calorimetry measurements and two-photon excited fluorescence). The derivatives with achiral linear carbon chains were found to exhibit liquid-crystal properties with the formation smectic phases over large temperature ranges, which were confirmed by small-angle X-ray scattering analysis via stacking models. The nonlinear optical properties in the solid state for derivatives with C14 and the citronellol chains have been studied by wide-field second-harmonic generation and multi-photon fluorescence imaging, confirming centrosymmetry for these achiral mesogens and their excellent third-order nonlinearity whereas the chiral compound exhibits non-centrosymmetric organization resulting in a strong Second Harmonic Generation at the crystal state.

2.
Small ; 18(18): e2200205, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355419

RESUMO

Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.


Assuntos
Microscopia de Geração do Segundo Harmônico , Corantes , Células HEK293 , Humanos , Potenciais da Membrana
3.
Chemphyschem ; 20(13): 1765-1774, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31020783

RESUMO

Gold nanoparticles (AuNPs) are regarded as promising building blocks in functional nanomaterials for sensing, drug delivery and catalysis. One remarkable property of these particles is the localized surface plasmon resonance (LSPR), which gives rise to augmented optical properties through local field enhancement. LSPR also influences the nonlinear optical properties of metal NPs (MNPs) making them potentially interesting candidates for fast, high resolution nonlinear optical imaging. In this work we characterize and discuss the wavelength dependence of the hyper-Rayleigh scattering (HRS) behavior of spherical gold nanoparticles (GNP) and gold nanorods (GNR) in solution, from 850 nm up to 1300 nm, covering the near-infrared (NIR) window relevant for deep tissue imaging. The high-resolution spectral data allows discriminating between HRS and two photon photoluminescence contributions. Upon particle aggregation, we measured very large enhancements (ca. 104 ) of the HRS intensity in the NIR, which is explained by considering aggregation-induced plasmon coupling effects and local field enhancement. These results indicate that purposely designed coupled nanostructures could prove advantageous for nonlinear optical imaging and biosensing applications.

4.
Chemistry ; 24(61): 16332-16341, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30191625

RESUMO

Straightforward syntheses of bis[bis{1,2-bis(diphenylphosphino)ethane}ruthenium]-functionalized 1,3,5-triethynylbenzene-cored complexes via a methodology employing "steric control" permit facile formation of Y-shaped Sonogashira coupling products and distorted-H-shaped homo-coupled quadrupolar products. Cyclic voltammetric data from these products reveal two reversible metal alkynyl-localized oxidation processes for all complexes. The wavelengths of the linear optical absorption maxima are dominated by the nature of the peripheral alkynyl ligand rather than the substituent at the unique arm of the "Y" or at the quadrupolar complex "core". The quadratic optical nonlinearities of the Y-shaped complexes were assessed by the hyper-Rayleigh scattering technique at 800 nm and employing 100 fs light pulses; introduction of donor NEt2 and/or acceptor NO2 to the wedge periphery resulted in non-zero nonlinearities, with the largest ßHRS,800 values being observed for the complexes containing the 4-nitrophenylalkynyl ligands. Depolarization ratios are consistent with substantial off-diagonal first hyperpolarizability tensor components and 2D nonlinear character. Computational studies employing time-dependent density functional theory have been employed to assign the key low-energy transitions in the linear optical spectra and to compute the quadratic nonlinear optical tensorial components. Cubic optical nonlinearities of the quadrupolar complexes were assessed by the Z-scan technique over the range 500-1600 nm and employing 130 fs light pulses; two-photon absorption cross-sections for these distorted-H-shaped complexes are moderate to large in value (up to 5500 GM at 880 nm), while one example displays significant three-photon absorption (1300×10-80  cm6 s2 at 1200 nm).

5.
Anal Chem ; 89(5): 2964-2971, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28192975

RESUMO

Organic materials are promising candidates for integration in optical network components allowing fast communication. Ultimate speeds can be obtained by exploiting third-order nonlinear optical light-matter interactions that ultimately rely on the molecular second hyperpolarizability (γ). The exploration of molecular structure-property relations is crucial to optimize γ but requires state of the art measurement techniques which are both sensitive and efficient. Unfortunately, present-day methods for probing the performance of third-order nonlinear optical (NLO) materials fail to meet at least one of those requirements. We have developed third-harmonic scattering (THS) as an alternative method to measure γ in solution, featuring a simple experimental setup and straightforward data analysis. Since the signal strength relies on |γ|2, the method proves to be very sensitive and allows rapid screening of organic molecules in dilute solutions for potential use in third-order NLO applications. In this manuscript, we demonstrate the experimental procedure and calibration of THS and have determined the second hyperpolarizability |γ| of commonly used solvents, which can be used as an internal calibration standard. As a proof of concept we determined γ of trans-stilbene and found it to be in excellent agreement with values obtained by other techniques.

6.
Langmuir ; 33(19): 4840-4846, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28427260

RESUMO

Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

7.
Angew Chem Int Ed Engl ; 56(32): 9546-9550, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28675543

RESUMO

The design of efficient noncentrosymmetric materials remains the ultimate goal in the field of organic second-order nonlinear optics. Unlike inorganic crystals currently used in second-order nonlinear optical applications, organic materials are an attractive alternative owing to their fast electro-optical response and processability, but their alignment into noncentrosymmetric film remains challenging. Here, symmetry breaking by judicious functionalization of 3D organic octupoles allows the emergence of multifunctional liquid crystalline chromophores which can easily be processed into large, flexible, thin, and self-oriented films with second harmonic generation responses competitive to the prototypical inorganic KH2 PO4 crystals. The liquid-crystalline nature of these chiral organic films also permits the modulation of the nonlinear optical properties owing to the sensitivity of the supramolecular organization to temperature, leading to the development of tunable macroscopic materials.

8.
Chem Asian J ; 19(9): e202400112, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353579

RESUMO

An original series of bipyrimidine-based chromophores featuring alkoxystyryl donor groups bearing short chiral (S)-2-methylbutyl chains in positions 4, 3,4 and 3,5, connected to electron-accepting 2,2-bipyrimidine rings, has been developed. Their linear and non-linear optical properties were studied using a variety of techniques, including one- and two-photon absorption spectroscopy, fluorescence measurements, as well as Hyper-Rayleigh scattering to determine the first hyperpolarizabilities. Their electronic and geometrical properties were rationalized by TD-DFT calculations. The thermal properties of the compounds were also investigated by a combination of polarized light optical microscopy, differential scanning calorimetry measurements and small-angle X-ray scattering experiments. The derivatives were found not to have mesomorphic properties, but to exhibit melting temperatures or cold crystallization behavior that enabled the isolation of well-organized thin films. The nonlinear optical properties of amorphous or crystalline thin films were studied by wide-field second harmonic generation and multiphoton fluorescence imaging, confirming that non-centrosymmetric crystal organization enables strong second and third harmonic generation. This new series confirms that our strategy of functionalizing 3D organic octupoles with short chiral chains to generate non-centrosymmetric organized thin films enables the development of highly second order nonlinear optical active materials without the use of corona-poling or tedious deposition techniques.

9.
Gels ; 9(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37998965

RESUMO

This review article provides an in-depth exploration of the role of gels in the fields of organic electronics and photonics, focusing on their unique properties and applications. Despite their remarkable potential, gel-based innovations remain relatively uncharted in these domains. This brief review aims to bridge the knowledge gap by shedding light on the diverse roles that gels can fulfil in the enhancement of organic electronic and photonic devices. From flexible electronics to light-emitting materials, we delve into specific examples of gel applications, highlighting their versatility and promising outcomes. This work serves as an indispensable resource for researchers interested in harnessing the transformative power of gels within these cutting-edge fields. The objective of this review is to raise awareness about the overlooked research potential of gels in optoelectronic materials, which have somewhat diminished in recent years.

10.
J Org Chem ; 77(23): 10891-6, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23126464

RESUMO

A set of chiral discotic phenylacetylenes have been synthesized by 3-fold Sonogashira coupling between different ethynylbenzenes and triiodobenzenes. The resultant bulk materials are fully characterized by polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction. The octopolar nature of the target compounds is studied by UV-vis absorption spectroscopy and hyper-Raleigh scattering in solution. Optimization of the donor-acceptor substitution yields both high hyperpolarizability values and appreciable mesomorphic properties. A simple thin film device for second harmonic generation has been prepared from the nitro-substituted liquid crystalline derivative.

11.
Chemistry ; 15(33): 8223-34, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19609987

RESUMO

We have synthesized three new molecules that have three thienylethynyl arms substituting a central benzene core and different electron donor/acceptor groups in the three remaining phenyl positions. The absorption, fluorescence, phosphorescence, and transient triplet-triplet spectra are analyzed in the light of the electronic structure of the ground and excited states obtained from quantum-chemical calculations. From the above, the relevant photophysical data (including quantum yields, lifetimes, and rate constants) could be derived. It was found that the major deactivation pathway is internal conversion, which competes with the fluorescence and intersystem crossing processes. For the three investigated compounds, we provide convincing theoretical support corroborating these findings and further conclusions based on the theoretical information obtained. These molecules are one of the very few cases in which the depolarization ratios, obtained from the NLO optical measurements, clearly reflect the octopolar configuration. Molecular hyperpolarizabilities have been measured and display a typical dependence on the donor-acceptor substitution pattern.

12.
Interface Focus ; 9(1): 20180052, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30603071

RESUMO

Upon illumination by ultraviolet light, many animal species emit light through fluorescence processes arising from fluorophores embedded within their biological tissues. Fluorescence studies in living organisms are however relatively scarce and so far limited to the linear regime. Multiphoton excitation fluorescence analyses as well as nonlinear optical techniques offer unique possibilities to investigate the effects of the local environment on the excited states of fluorophores. Herein, these techniques are applied for the first time to study of the naturally controlled fluorescence in insects. The case of the male Hoplia coerulea beetle is investigated because the scales covering the beetle's elytra are known to possess an internal photonic structure with embedded fluorophores, which controls both the beetle's coloration and the fluorescence emission. An intense two-photon excitation fluorescence signal is observed, the intensity of which changes upon contact with water. A third-harmonic generation signal is also detected, the intensity of which depends on the light polarization state. The analysis of these nonlinear optical and fluorescent responses unveils the multi-excited states character of the fluorophore molecules embedded in the beetle's elytra. The role of form anisotropy in the photonic structure, which causes additional tailoring of the beetle's optical responses, is demonstrated by circularly polarized light and nonlinear optical measurements.

13.
J Biophotonics ; 12(9): e201800470, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134739

RESUMO

The wings of some insect species are known to fluoresce under illumination by ultraviolet light. Their fluorescence properties are however, not comprehensively documented. In this article, the optical properties of one specific insect, the Trictenotoma childreni yellow longhorn beetle, were investigated using both linear and nonlinear optical (NLO) methods, including one- and two-photon fluorescence and second harmonic generation (SHG). These three distinct optical signals discovered in this beetle are attributed to the presence of fluorophores embedded within the scales covering their elytra. Experimental evidence collected in this study indicates that the fluorophores are non-centrosymmetric, a fundamental requirement for SHG. This study is the first reported optical behavior of this type in insects. We described how NLO techniques can complement other more convenient approaches to achieve a more comprehensive understanding of insect scales and integument properties.


Assuntos
Besouros/fisiologia , Imagem Óptica , Asas de Animais/fisiologia , Animais , Cor , Feminino , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Luz , Masculino , Microscopia de Fluorescência , Dinâmica não Linear , Fótons , Espectrometria de Fluorescência , Espectrofotometria , Espectrofotometria Ultravioleta , Asas de Animais/diagnóstico por imagem
14.
Adv Mater ; 30(25): e1707246, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29726040

RESUMO

The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing.

15.
Nat Commun ; 9(1): 3418, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143611

RESUMO

Recent developments in nonlinear optical light scattering techniques have opened a window into morphological and structural characteristics for a variety of supramolecular systems. However, for the study of dynamic processes, the current way of measuring is often too slow. Here we present an alternative measurement scheme suitable for following dynamic processes. Fast acquisition times are achieved through Fourier imaging, allowing simultaneous detection at multiple scattering angles for different polarization combinations. This allows us to follow the crystal growth of the metal organic framework ZIF-8 in solution. The angle dependence of the signal provides insight into the growth mechanism by probing the evolution of size, shape and concentration, while polarization analysis yields structural information in terms of point group symmetry. Our findings highlight the potential of dynamic angle-resolved harmonic light scattering to probe crystal growth processes, assembly-disassembly of biological systems, adsorption, transport through membranes and myriad other applications.

16.
Nanoscale ; 8(35): 15845-9, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27545098

RESUMO

Direct reactive ion etching (RIE) of hollow SiO2 sphere colloidal crystals (HSCCs) is employed as a facile, low-cost method to fabricate complex three-dimensional (3D) hierarchical nanostructures. These multilayered structures are gradually transformed into nanostructures of increasing complexity by controlling the etching time, without complicated procedures (no mask needed). The resulting 3D topologies are unique, and cannot be obtained through traditional approaches. The formation mechanism of these structures is explained in detail by geometrical modeling during the different etching stages, through shadow effects of the higher layers. SEM images confirm the modeled morphological changes. The nanostructures obtained by our approach show very fine features as small as ∼30 nm. Our approach opens new avenues to directly obtain complex 3D nanostructures from colloidal crystals and can find applications in sensing, templating, and catalysis where fine tuning the specific surface might be critical.

17.
Nanoscale ; 8(24): 12123-7, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27264025

RESUMO

The first hyperpolarizabilities of [Au25(SR)18](-1/0) and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18](-1/0), protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics.

18.
Dalton Trans ; 45(10): 4401-6, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26812223

RESUMO

Polar metal-organic frameworks have potential applications as functional non-linear optical, piezoelectric, pyroelectric and ferroelectric materials. Using second harmonic generation microscopy we found that fluoride doping of the microporous iron(iii) terephthalate MOF MIL-53(Fe) induces a polar organization in its structure, which was not previously detected with XRD. The polar order is only observed when both fluoride and guest molecules are present, and may be related to a complex interplay between the adsorbates and the framework, leading to a modification of the positioning of fluoride in the inorganic Fe-chains. Combined polarized second harmonic generation microscopy and scanning pyroelectric microscopy show that the polar axis is unidirectional and of the same sense over the whole crystal, extending up to 100 micrometers. This finding shows how MOF materials can be endowed with useful properties by doping MOFs with fluoride.

19.
Nat Chem ; 8(3): 250-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26892557

RESUMO

Interpenetration, the entwining of multiple lattices, is a common phenomenon in metal-organic frameworks (MOFs). Typically, in interpenetrated MOFs the sub-lattices are fully occupied. Here we report a family of MOFs in which one sub-lattice is fully occupied and the occupancy level of the other can be controlled during synthesis to produce frameworks with variable levels of partial interpenetration. We also report an 'autocatenation' process, a transformation of non-interpenetrated lattices into doubly interpenetrated frameworks via progressively higher degrees of interpenetration that involves no external reagents. Autocatenation maintains crystallinity and can be triggered either thermally or by shear forces. The ligand used to construct these MOFs is chiral, and both racemic and enantiopure partially interpenetrated frameworks can be accessed. X-ray diffraction, nonlinear optical microscopy and theoretical calculations offer insights into the structures and dynamic behaviour of these materials and the growth mechanisms of interpenetrated MOFs.

20.
ACS Appl Mater Interfaces ; 6(6): 3870-8, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24559215

RESUMO

Three-dimensionally ordered macroporous materials have unique structural and optical properties, making them useful for numerous applications in catalysis, membrane science, and optics. Accessible and economic fabrication of these materials is essential to fully explore the many possibilities that these materials present. A new templating method to fabricate three-dimensionally ordered macroporous materials without overlayers is presented. The resulting structures are freestanding inverse opals with large-area uniformity. The versatility and power of our fabrication method is demonstrated by synthesizing inverse opals displaying fluorescence, chirality, upconversion, second harmonic generation, and third harmonic generation. This economical and versatile fabrication method will facilitate research on inverse opals in general and on linear and nonlinear optical effects in 3D photonic crystals specifically. The relative ease of synthesis and wide variety of resulting materials will help the characterization and improvement of existing anomalous dispersion effects in these structures, while providing a platform for the discovery and demonstration of novel effects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa