Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Euro Surveill ; 29(28)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994602

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAb) is an important pathogen causing serious nosocomial infections. We describe an outbreak of CRAb in an intensive care unit in the Netherlands in 2021. During an outbreak of non-resistant A. baumannii, while infection control measures were in place, CRAb isolates carrying highly similar bla NDM-1 - and tet(x3)-encoding plasmids were isolated from three patients over a period of several months. The chromosomal and plasmid sequences of the CRAb and non-carbapenemase-carrying A. baumannii isolates cultured from patient materials were analysed using hybrid assemblies of short-read and long-read sequences. The CRAb isolates revealed that the CRAb outbreak consisted of two different strains, carrying similar plasmids. The plasmids contained multiple antibiotic resistance genes including the tetracycline resistance gene tet(x3), and the bla NDM-1 and bla OXA-97 carbapenemase genes. We determined minimal inhibitory concentrations (MICs) for 13 antibiotics, including the newly registered tetracycline antibiotics eravacycline and omadacycline. The CRAb isolates showed high MICs for tetracycline antibiotics including eravacycline and omadacycline, except for minocycline which had a low MIC. In this study we show the value of sequencing multidrug-resistant A. baumannii for outbreak tracking and guiding outbreak mitigation measures.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Tetraciclinas , beta-Lactamases , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/enzimologia , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Tetraciclinas/farmacologia , Antibacterianos/farmacologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , beta-Lactamases/genética , Países Baixos/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Surtos de Doenças , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Unidades de Terapia Intensiva
2.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33227814

RESUMO

Subcellular localization is a critical aspect of protein function and the potential application of proteins either as drugs or drug targets, or in industrial and domestic applications. However, the experimental determination of protein localization is time consuming and expensive. Therefore, various localization predictors have been developed for particular groups of species. Intriguingly, despite their major representation amongst biotechnological cell factories and pathogens, a meta-predictor based on sorting signals and specific for Gram-positive bacteria was still lacking. Here we present GP4, a protein subcellular localization meta-predictor mainly for Firmicutes, but also Actinobacteria, based on the combination of multiple tools, each specific for different sorting signals and compartments. Novelty elements include improved cell-wall protein prediction, including differentiation of the type of interaction, prediction of non-canonical secretion pathway target proteins, separate prediction of lipoproteins and better user experience in terms of parsability and interpretability of the results. GP4 aims at mimicking protein sorting as it would happen in a bacterial cell. As GP4 is not homology based, it has a broad applicability and does not depend on annotated databases with homologous proteins. Non-canonical usage may include little studied or novel species, synthetic and engineered organisms, and even re-use of the prediction data to develop custom prediction algorithms. Our benchmark analysis highlights the improved performance of GP4 compared to other widely used subcellular protein localization predictors. A webserver running GP4 is available at http://gp4.hpc.rug.nl/.


Assuntos
Actinobacteria , Algoritmos , Proteínas de Bactérias , Biologia Computacional , Bases de Dados de Proteínas , Firmicutes , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Firmicutes/genética , Firmicutes/metabolismo , Análise de Sequência de Proteína
3.
Int J Med Microbiol ; 313(3): 151581, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37209590

RESUMO

Fluorine-18-fluorodeoxyglucose ([18F]FDG) positron emission tomography (18F-FDG-PET) is widely used for the detection of inflammatory and infectious diseases. Although this modality has proven to be a useful diagnostic tool, reliable distinction of bacterial infection from sterile inflammation or even from a malignancy remains challenging. Therefore, there is a need for bacteria-specific tracers for PET imaging that facilitate a reliable distinction of bacterial infection from other pathology. The present study was aimed at exploring the potential of 2-[18F]-fluorodeoxysorbitol ([18F]FDS) as a tracer for detection of Enterobacterales infections. Sorbitol is a sugar alcohol that is commonly metabolized by bacteria of the Enterobacterales order, but not by mammalian cells, which makes it an attractive candidate for targeted bacterial imaging. The latter is important in view of the serious clinical implications of infections caused by Enterobacterales. Here we demonstrate that sorbitol-based PET can be applied to detect a broad range of clinical bacterial isolates not only in vitro, but also in blood and ascites samples from patients suffering from Enterobacterales infections. Notably, the possible application of [18F]FDS is not limited to Enterobacterales since Pseudomonas aeruginosa and Corynebacterium jeikeium also showed substantial uptake of this tracer. We conclude that [18F]FDS is a promising tracer for PET-imaging of infections caused by a group of bacteria that can cause serious invasive disease.


Assuntos
Infecções Bacterianas , Fluordesoxiglucose F18 , Animais , Humanos , Tomografia por Emissão de Pósitrons/métodos , Sorbitol , Bactérias , Mamíferos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37962617

RESUMO

PURPOSE: Staphylococcus aureus is the most common and impactful multi-drug resistant pathogen implicated in (periprosthetic) joint infections (PJI) and fracture-related infections (FRI). Therefore, the present proof-of-principle study was aimed at the rapid detection of S. aureus in synovial fluids and biofilms on extracted osteosynthesis materials through bacteria-targeted fluorescence imaging with the 'smart-activatable' DNA-based AttoPolyT probe. This fluorogenic oligonucleotide probe yields large fluorescence increases upon cleavage by micrococcal nuclease, an enzyme secreted by S. aureus. METHODS: Synovial fluids from patients with suspected PJI and extracted osteosynthesis materials from trauma patients with suspected FRI were inspected for S. aureus nuclease activity with the AttoPolyT probe. Biofilms on osteosynthesis materials were imaged with the AttoPolyT probe and a vancomycin-IRDye800CW conjugate (vanco-800CW) specific for Gram-positive bacteria. RESULTS: 38 synovial fluid samples were collected and analyzed. Significantly higher fluorescence levels were measured for S. aureus-positive samples compared to, respectively, other Gram-positive bacterial pathogens (p < 0.0001), Gram-negative bacterial pathogens (p = 0.0038) and non-infected samples (p = 0.0030), allowing a diagnosis of S. aureus-associated PJI within 2 h. Importantly, S. aureus-associated biofilms on extracted osteosynthesis materials from patients with FRI were accurately imaged with the AttoPolyT probe, allowing their correct distinction from biofilms formed by other Gram-positive bacteria detected with vanco-800CW within 15 min. CONCLUSION: The present study highlights the potential clinical value of the AttoPolyT probe for fast and accurate detection of S. aureus infection in synovial fluids and biofilms on extracted osteosynthesis materials.

5.
Crit Rev Microbiol ; 48(5): 624-640, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34879216

RESUMO

Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.


Assuntos
Corpos Estranhos , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/efeitos adversos , Biofilmes , Corpos Estranhos/tratamento farmacológico , Reação a Corpo Estranho/tratamento farmacológico , Reação a Corpo Estranho/etiologia , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
6.
Eur J Nucl Med Mol Imaging ; 49(7): 2276-2289, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35079847

RESUMO

PURPOSE: Fracture-related infection (FRI) is a serious complication in orthopedic trauma surgery worldwide. Especially, the distinction of infection from sterile inflammation and the detection of low-grade infection are highly challenging. The objective of the present study was to obtain proof-of-principle for the use of bacteria-targeted fluorescence imaging to detect FRI on extracted osteosynthesis devices as a step-up towards real-time image-guided trauma surgery. METHODS: Extracted osteosynthesis devices from 13 patients, who needed revision surgery after fracture treatment, were incubated with a near-infrared fluorescent tracer composed of the antibiotic vancomycin and the fluorophore IRDye800CW (i.e., vanco-800CW). Subsequently, the devices were imaged, and vanco-800CW fluorescence signals were correlated to the results of microbiological culturing and to bacterial growth upon replica plating of the imaged devices on blood agar. RESULTS: Importantly, compared to culturing, the bacteria-targeted fluorescence imaging of extracted osteosynthesis devices with vanco-800CW allows for a prompt diagnosis of FRI, reducing the time-to-result from days to less than 30 min. Moreover, bacteria-targeted imaging can provide surgeons with real-time visual information on the presence and extent of infection. CONCLUSION: Here, we present the first clinical application of fluorescence imaging for the detection of FRI. We conclude that imaging with vanco-800CW can provide early, accurate, and real-time visual diagnostic information on FRI in the clinical setting, even in the case of low-grade infections.


Assuntos
Fraturas Ósseas , Antibacterianos/uso terapêutico , Bactérias , Fraturas Ósseas/complicações , Humanos , Imagem Óptica
7.
J Am Chem Soc ; 143(27): 10041-10047, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181410

RESUMO

The development of very fast, clean, and selective methods for indirect labeling in PET tracer synthesis is an ongoing challenge. Here we present the development of an ultrafast photoclick method for the synthesis of short-lived 18F-PET tracers based on the photocycloaddition reaction of 9,10-phenanthrenequinones with electron-rich alkenes. The respective precursors are synthetically easily accessible and can be functionalized with various target groups. Using a flow photo-microreactor, the photoclick reaction can be performed in 60 s, and clinically relevant tracers for prostate cancer and bacterial infection imaging were prepared to demonstrate practicality of the method.

8.
Crit Rev Microbiol ; 47(5): 630-646, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33934682

RESUMO

Bdellovibrio bacteriovorus is a small Deltaproteobacterium which, since its discovery, has distinguished itself for the unique ability to prey on other Gram-negative bacteria. The studies on this particular "predatory bacterium", have gained momentum in response to the rising problem of antibiotic resistance, because it could be applied as a potential probiotic and antibiotic agent. Hereby, we present recent advances in the study of B. bacteriovorus, comprehending fundamental aspects of its biology, obligatory intracellular life cycle, predation resistance, and potential applications. Furthermore, we discuss studies that pave the road towards the use of B. bacteriovorus as a "living antibiotic" in human therapy, focussing on its interaction with biofilms, the host immune response, predation susceptibility and in vivo application models. The available data imply that it will be possible to upgrade this predator bacterium from a predominantly academic interest to an instrument that could confront antibiotic resistant infections.


Assuntos
Antibiose , Infecções Bacterianas/terapia , Bdellovibrio bacteriovorus/fisiologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Animais , Infecções Bacterianas/microbiologia , Bdellovibrio bacteriovorus/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Agentes de Controle Biológico , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Interações Microbianas , Probióticos
9.
Eur J Nucl Med Mol Imaging ; 48(3): 757-767, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32901352

RESUMO

PURPOSE: Due to an increased human life expectancy, the need to replace arthritic or dysfunctional joints by prosthetics is higher than ever before. Prosthetic joints are unfortunately inherently susceptible to bacterial infection accompanied by biofilm formation. Accurate and rapid diagnosis is vital to increase therapeutic success. Yet, established diagnostic modalities cannot directly detect bacterial biofilms on prostheses. Therefore, the present study was aimed at investigating whether arthroscopic optical imaging can accurately detect bacterial biofilms on prosthetic joints. METHODS: Here, we applied a conjugate of the antibiotic vancomycin and the near-infrared fluorophore IRDye800CW, in short vanco-800CW, in combination with arthroscopic optical imaging to target and visualize biofilms on infected prostheses. RESULTS: We show in a human post-mortem prosthetic knee infection model that a staphylococcal biofilm is accurately detected in real time and distinguished from sterile sections in high resolution. In addition, we demonstrate that biofilms associated with the clinically most relevant bacterial species can be detected using vanco-800CW. CONCLUSION: The presented image-guided arthroscopic approach provides direct visual diagnostic information and facilitates immediate appropriate treatment selection.


Assuntos
Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Biofilmes , Estudos de Viabilidade , Humanos , Próteses e Implantes , Infecções Relacionadas à Prótese/diagnóstico por imagem , Infecções Estafilocócicas/diagnóstico por imagem
10.
Mol Cell Proteomics ; 18(5): 892-908, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808728

RESUMO

Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.


Assuntos
Brônquios/patologia , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Apoptose , Proteínas de Bactérias/metabolismo , Linhagem Celular , Citosol/metabolismo , Células Epiteliais/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Proteoma/metabolismo , Staphylococcus aureus/ultraestrutura
11.
J Proteome Res ; 19(8): 2997-3010, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32529827

RESUMO

The opportunistic pathogen Staphylococcus aureus has become a major threat for human health and well-being by developing resistance to antibiotics and by fast evolution into new lineages that rapidly spread within the healthy human population. This calls for development of active or passive immunization strategies to prevent or treat acute phase infections. Since no such anti-staphylococcal immunization approaches are available for clinical implementation, the present studies were aimed at identifying new leads for their development. For this purpose, we profiled the cell-surface-exposed staphylococcal proteome under infection-mimicking conditions by combining two approaches for "bacterial shaving" with immobilized or soluble trypsin and subsequent mass spectrometry analysis of liberated peptides. In parallel, non-covalently cell-wall-bound proteins extracted with potassium thiocyanate and the exoproteome fraction were analyzed by gel-free proteomics. All data are available through ProteomeXchange accession PXD000156. To pinpoint immunodominant bacterial-surface-exposed epitopes, we screened selected cell-wall-attached proteins of S. aureus for binding of immunoglobulin G from patients who have been challenged by different types of S. aureus due to chronic wound colonization. The combined results of these analyses highlight particular cell-surface-exposed S. aureus proteins with highly immunogenic exposed epitopes as potential targets for development of protective anti-staphylococcal immunization strategies.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Proteínas de Bactérias , Membrana Celular , Humanos , Epitopos Imunodominantes , Proteoma , Infecções Estafilocócicas/prevenção & controle
12.
Microb Cell Fact ; 19(1): 52, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111210

RESUMO

BACKGROUND: Bacillus subtilis is an important industrial workhorse applied in the production of many different commercially relevant proteins, especially enzymes. Virtually all of these proteins are secreted via the general secretion (Sec) pathway. Studies from different laboratories have demonstrated essential or non-essential contributions of various Sec machinery components to protein secretion in B. subtilis. However, a systematic comparison of the impact of each individual Sec machinery component under conditions of high-level protein secretion was so far missing. RESULTS: In the present study, we have compared the contributions of non-essential Sec pathway components and cell envelope-associated proteases on the secretion efficiency of three proteins expressed at high level. This concerned the α-amylases AmyE from B. subtilis and AmyL from Bacillus licheniformis, and the serine protease BPN' from Bacillus amyloliquefaciens. We compared the secretion capacity of mutant strains in shake flask cultures, and the respective secretion kinetics by pulse-chase labeling experiments. The results show that secDF, secG or rasP mutations severely affect AmyE, AmyL and BPN' secretion, but the actual effect size depends on the investigated protein. Additionally, the chaperone DnaK is important for BPN' secretion, while AmyE or AmyL secretion are not affected by a dnaK deletion. Further, we assessed the induction of secretion stress responses in mutant strains by examining AmyE- and AmyL-dependent induction of the quality control proteases HtrA and HtrB. Interestingly, the deletion of certain sip genes revealed a strong differential impact of particular signal peptidases on the magnitude of the secretion stress response. CONCLUSIONS: The results of the present study highlight the importance of SecDF, SecG and RasP for protein secretion and reveal unexpected differences in the induction of the secretion stress response in different mutant strains.


Assuntos
Bacillus subtilis/enzimologia , Membrana Celular/enzimologia , Peptídeo Hidrolases/biossíntese , Via Secretória , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/genética , Transporte Proteico , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , alfa-Amilases/genética
13.
J Shoulder Elbow Surg ; 29(7): 1412-1424, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32014357

RESUMO

BACKGROUND: Animal models are used to guide management of periprosthetic implant infections. No adequate model exists for periprosthetic shoulder infections, and clinicians thus have no preclinical tools to assess potential therapeutics. We hypothesize that it is possible to establish a mouse model of shoulder implant infection (SII) that allows noninvasive, longitudinal tracking of biofilm and host response through in vivo optical imaging. The model may then be employed to validate a targeting probe (1D9-680) with clinical translation potential for diagnosing infection and image-guided débridement. METHODS: A surgical implant was press-fit into the proximal humerus of c57BL/6J mice and inoculated with 2 µL of 1 × 103 (e3), or 1 × 104 (e4), colony-forming units (CFUs) of bioluminescent Staphylococcus aureus Xen-36. The control group received 2 µL sterile saline. Bacterial activity was monitored in vivo over 42 days, directly (bioluminescence) and indirectly (targeting probe). Weekly radiographs assessed implant loosening. CFU harvests, confocal microscopy, and histology were performed. RESULTS: Both inoculated groups established chronic infections. CFUs on postoperative day (POD) 42 were increased in the infected groups compared with the sterile group (P < .001). By POD 14, osteolysis was visualized in both infected groups. The e4 group developed catastrophic bone destruction by POD 42. The e3 group maintained a congruent shoulder joint. Targeting probes helped to visualize low-grade infections via fluorescence. DISCUSSION: Given bone destruction in the e4 group, a longitudinal, noninvasive mouse model of SII and chronic osteolysis was produced using e3 of S aureus Xen-36, mimicking clinical presentations of chronic SII. CONCLUSION: The development of this model provides a foundation to study new therapeutics, interventions, and host modifications.


Assuntos
Complicações Pós-Operatórias/microbiologia , Infecções Relacionadas à Prótese/etiologia , Articulação do Ombro , Prótese de Ombro/efeitos adversos , Infecções Estafilocócicas/microbiologia , Animais , Biofilmes , Desbridamento , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus
14.
J Proteome Res ; 18(7): 2859-2874, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31119940

RESUMO

Staphylococcus aureus with spa-type t437 has been identified as a predominant community-associated methicillin-resistant S. aureus clone from Asia, which is also encountered in Europe. Molecular typing has previously shown that t437 isolates are highly similar regardless of geographical regions or host environments. The present study was aimed at assessing to what extent this high similarity is actually reflected in the production of secreted virulence factors. We therefore profiled the extracellular proteome, representing the main reservoir of virulence factors, of 20 representative clinical isolates by mass spectrometry. The results show that these isolates can be divided into three groups and nine subgroups based on exoproteome abundance signatures. This implies that S. aureus t437 isolates show substantial exoproteome heterogeneity. Nonetheless, 30 highly conserved extracellular proteins, of which about 50% have a predicted role in pathogenesis, were dominantly identified. To approximate the virulence of the 20 investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results show that the grouping of clinical isolates based on their exoproteome profile can be related to virulence. We consider this outcome important as our approach provides a tool to pinpoint differences in virulence among seemingly highly similar clinical isolates of S. aureus.


Assuntos
Staphylococcus aureus/patogenicidade , Fatores de Virulência/análise , Animais , Proteínas de Bactérias/análise , Heterogeneidade Genética , Células HeLa , Humanos , Espectrometria de Massas , Staphylococcus aureus Resistente à Meticilina , Mariposas/microbiologia , Proteoma , Infecções Estafilocócicas , Staphylococcus aureus/isolamento & purificação
15.
Anal Chem ; 91(18): 11972-11980, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31424929

RESUMO

The field of systems biology has been rapidly developing in the past decade. However, the data produced by "omics" approaches is lagging behind the requirements of this field, especially when it comes to absolute abundances of membrane proteins. In the present study, a novel approach for large-scale absolute quantification of this challenging subset of proteins has been established and evaluated using osmotic stress management in the Gram-positive model bacterium Bacillus subtilis as proof-of-principle precedent. Selected membrane proteins were labeled using a SNAP-tag, which allowed us to visually inspect the enrichment of the membrane fraction by immunoassays. Absolute membrane protein concentrations were determined via shotgun proteomics by spiking crude membrane extracts of chromosomally SNAP-tagged and wild-type B. subtilis strains with protein standards of known concentration. Shotgun data was subsequently calibrated by targeted mass spectrometry using SNAP as an anchor protein, and an enrichment factor was calculated in order to obtain membrane protein copy numbers per square micrometer. The presented approach enabled the accurate determination of physiological changes resulting from imposed hyperosmotic stress, thereby offering a clear visualization of alterations in membrane protein arrangements and shedding light on putative membrane complexes. This straightforward and cost-effective methodology for quantitative proteome studies can be implemented by any research group with mass spectrometry expertise. Importantly, it can be applied to the full spectrum of physiologically relevant conditions, ranging from environmental stresses to the biotechnological production of small molecules and proteins, a field heavily relying on B. subtilis secretion capabilities.


Assuntos
Bacillus subtilis/química , Proteínas de Membrana/análise , Proteômica , Bacillus subtilis/citologia , Imunoensaio , Pressão Osmótica
16.
PLoS Genet ; 12(4): e1005962, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035918

RESUMO

Staphylococcus aureus is a major pathogen that colonizes about 20% of the human population. Intriguingly, this Gram-positive bacterium can survive and thrive under a wide range of different conditions, both inside and outside the human body. Here, we investigated the transcriptional adaptation of S. aureus HG001, a derivative of strain NCTC 8325, across experimental conditions ranging from optimal growth in vitro to intracellular growth in host cells. These data establish an extensive repertoire of transcription units and non-coding RNAs, a classification of 1412 promoters according to their dependence on the RNA polymerase sigma factors SigA or SigB, and allow identification of new potential targets for several known transcription factors. In particular, this study revealed a relatively low abundance of antisense RNAs in S. aureus, where they overlap only 6% of the coding genes, and only 19 antisense RNAs not co-transcribed with other genes were found. Promoter analysis and comparison with Bacillus subtilis links the small number of antisense RNAs to a less profound impact of alternative sigma factors in S. aureus. Furthermore, we revealed that Rho-dependent transcription termination suppresses pervasive antisense transcription, presumably originating from abundant spurious transcription initiation in this A+T-rich genome, which would otherwise affect expression of the overlapped genes. In summary, our study provides genome-wide information on transcriptional regulation and non-coding RNAs in S. aureus as well as new insights into the biological function of Rho and the implications of spurious transcription in bacteria.


Assuntos
Staphylococcus aureus/genética , Transcriptoma , Sítios de Ligação , Northern Blotting , Expressão Gênica , Genes Bacterianos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-29311088

RESUMO

OXA-427 is a new class D carbapenemase encountered in different species of Enterobacteriaceae in a Belgian hospital. To study the dispersal of this gene, we performed a comparative analysis of two plasmids containing the blaOXA-427 gene, isolated from a Klebsiella pneumoniae strain and an Enterobacter cloacae complex strain. The two IncA/C2 plasmids containing blaOXA-427 share the same backbone; in the K. pneumoniae strain, however, this plasmid is cointegrated into an IncFIb plasmid, forming a 321-kb megaplasmid with multiple multiresistance regions.


Assuntos
Proteínas de Bactérias/genética , Plasmídeos/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
18.
Curr Top Microbiol Immunol ; 404: 69-94, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27121927

RESUMO

Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins. We provide overviews of our current understanding of Tat pathway composition and mechanistic aspects related to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility, requirements for the correct folding and incorporation of co-factors in cargo proteins and the functions of known cargo proteins. Tat pathways of several Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of Bacillus subtilis. We discuss both shared and unique features of the different Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future research on Tat, including the development of this protein transport pathway for the biotechnological secretion of high-value proteins and its potential applicability as an antimicrobial drug target in pathogens.


Assuntos
Proteínas de Bactérias/fisiologia , Bactérias Gram-Positivas/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Bactérias/química , Proteínas de Escherichia coli/fisiologia , Dobramento de Proteína , Transporte Proteico
20.
PLoS Genet ; 11(3): e1005046, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25790031

RESUMO

Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Heterogeneidade Genética , RNA/genética , Fatores de Transcrição/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa