Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Plant Cell ; 33(8): 2662-2684, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34086963

RESUMO

The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.


Assuntos
Reparo do DNA/genética , Endosperma/genética , Proteínas de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Sistemas CRISPR-Cas , Morte Celular/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA/genética , Endosperma/citologia , Instabilidade Genômica , Mutação , Células Vegetais , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/citologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/citologia , Zea mays/crescimento & desenvolvimento
2.
Plant Physiol ; 188(1): 411-424, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34791456

RESUMO

SAMBA has been identified as a plant-specific regulator of the anaphase-promoting complex/cyclosome (APC/C) that controls unidirectional cell cycle progression in Arabidopsis (Arabidopsis thaliana), but so far its role has not been studied in monocots. Here, we show the association of SAMBA with the APC/C is conserved in maize (Zea mays). Two samba genome edited mutants showed growth defects, such as reduced internode length, shortened upper leaves with erect leaf architecture, and reduced leaf size due to an altered cell division rate and cell expansion, which aggravated with plant age. The two mutants differed in the severity and developmental onset of the phenotypes, because samba-1 represented a knockout allele, while translation re-initiation in samba-3 resulted in a truncated protein that was still able to interact with the APC/C and regulate its function, albeit with altered APC/C activity and efficiency. Our data are consistent with a dosage-dependent role for SAMBA to control developmental processes for which a change in growth rate is pivotal.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fenótipo
3.
Proc Natl Acad Sci U S A ; 116(16): 8060-8069, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923114

RESUMO

HISTONE MONOUBIQUITINATION1 (HUB1) and its paralog HUB2 act in a conserved heterotetrameric complex in the chromatin-mediated transcriptional modulation of developmental programs, such as flowering time, dormancy, and the circadian clock. The KHD1 and SPEN3 proteins were identified as interactors of the HUB1 and HUB2 proteins with in vitro RNA-binding activity. Mutants in SPEN3 and KHD1 had reduced rosette and leaf areas. Strikingly, in spen3 mutants, the flowering time was slightly, but significantly, delayed, as opposed to the early flowering time in the hub1-4 mutant. The mutant phenotypes in biomass and flowering time suggested a deregulation of their respective regulatory genes CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) and FLOWERING LOCUS C (FLC) that are known targets of the HUB1-mediated histone H2B monoubiquitination (H2Bub). Indeed, in the spen3-1 and hub1-4 mutants, the circadian clock period was shortened as observed by luciferase reporter assays, the levels of the CCA1α and CCA1ß splice forms were altered, and the CCA1 expression and H2Bub levels were reduced. In the spen3-1 mutant, the delay in flowering time was correlated with an enhanced FLC expression, possibly due to an increased distal versus proximal ratio of its antisense COOLAIR transcript. Together with transcriptomic and double-mutant analyses, our data revealed that the HUB1 interaction with SPEN3 links H2Bub during transcript elongation with pre-mRNA processing at CCA1 Furthermore, the presence of an intact HUB1 at the FLC is required for SPEN3 function in the formation of the FLC-derived antisense COOLAIR transcripts.


Assuntos
Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas , Histonas , RNA de Plantas , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Histonas/genética , Histonas/metabolismo , Domínios Proteicos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia
4.
Plant Mol Biol ; 106(6): 555-567, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275101

RESUMO

KEY MESSAGE: Root-specific expression of a cytokinin-degrading CKX gene in maize roots causes formation of a larger root system leading to higher element content in shoot organs. The size and architecture of the root system is functionally relevant for the access to water and soil nutrients. A great number of mostly unknown genes are involved in regulating root architecture complicating targeted breeding of plants with a larger root system. Here, we have explored whether root-specific degradation of the hormone cytokinin, which is a negative regulator of root growth, can be used to genetically engineer maize (Zea mays L.) plants with a larger root system. Root-specific expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) gene of Arabidopsis caused the formation of up to 46% more root dry weight while shoot growth of these transgenic lines was similar as in non-transgenic control plants. The concentration of several elements, in particular of those with low soil mobility (K, P, Mo, Zn), was increased in leaves of transgenic lines. In kernels, the changes in concentration of most elements were less pronounced, but the concentrations of Cu, Mn and Zn were significantly increased in at least one of the three independent lines. Our data illustrate the potential of an increased root system as part of efforts towards achieving biofortification. Taken together, this work has shown that root-specific expression of a CKX gene can be used to engineer the root system of maize and alter shoot element composition.


Assuntos
Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Membrana/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Folhas de Planta/genética , Raízes de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Manganês/metabolismo , Proteínas de Membrana/metabolismo , Minerais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zinco/metabolismo
5.
Plant Physiol ; 182(4): 2154-2165, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31980571

RESUMO

The plasma membrane intrinsic protein PIP2;5 is the most highly expressed aquaporin in maize (Zea mays) roots. Here, we investigated how deregulation of PIP2;5 expression affects water relations and growth using maize overexpression (OE; B104 inbred) or knockout (KO; W22 inbred) lines. The hydraulic conductivity of the cortex cells of roots grown hydroponically was higher in PIP2;5 OE and lower in pip2;5 KO lines compared with the corresponding wild-type plants. While whole-root conductivity decreased in the KO lines compared to the wild type, no difference was observed in OE plants. This paradox was interpreted using the MECHA hydraulic model, which computes the radial flow of water within root sections. The model hints that the plasma membrane permeability of the cells is not radially uniform but that PIP2;5 may be saturated in cell layers with apoplastic barriers, i.e. the endodermis and exodermis, suggesting the presence of posttranslational mechanisms controlling the abundance of PIP in the plasma membrane in these cells. At the leaf level, where the PIP2;5 gene is weakly expressed in wild-type plants, the hydraulic conductance was higher in the PIP2;5 OE lines compared with the wild-type plants, whereas no difference was observed in the pip2;5 KO lines. The temporal trend of leaf elongation rate, used as a proxy for that of xylem water potential, was faster in PIP2;5 OE plants upon mild stress, but not in well-watered conditions, demonstrating that PIP2;5 may play a beneficial role in plant growth under specific conditions.


Assuntos
Aquaporinas/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Aquaporinas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Transpiração Vegetal/genética , Transpiração Vegetal/fisiologia , Xilema/genética , Xilema/metabolismo , Zea mays/genética , Zea mays/metabolismo
6.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28720596

RESUMO

The Elongator complex (hereafter Elongator) promotes RNA polymerase II-mediated transcript elongation through epigenetic activities such as histone acetylation. Elongator regulates growth, development, immune response and sensitivity to drought and abscisic acid. We demonstrate that elo mutants exhibit defective hypocotyl elongation but have a normal apical hook in darkness and are hyposensitive to light during photomorphogenesis. These elo phenotypes are supported by transcriptome changes, including downregulation of circadian clock components, positive regulators of skoto- or photomorphogenesis, hormonal pathways and cell wall biogenesis-related factors. The downregulated genes LHY, HFR1 and HYH are selectively targeted by Elongator for histone H3K14 acetylation in darkness. The role of Elongator in early seedling development in darkness and light is supported by hypocotyl phenotypes of mutants defective in components of the gene network regulated by Elongator, and by double mutants between elo and mutants in light or darkness signaling components. A model is proposed in which Elongator represses the plant immune response and promotes hypocotyl elongation and photomorphogenesis via transcriptional control of positive photomorphogenesis regulators and a growth-regulatory network that converges on genes involved in cell wall biogenesis and hormone signaling.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Escuridão , Morfogênese/efeitos da radiação , Complexos Multiproteicos/metabolismo , Acetilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ritmo Circadiano/fisiologia , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Hipocótilo/crescimento & desenvolvimento , Modelos Biológicos , Mutação/genética , Fenótipo , Receptores de Superfície Celular/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Transcriptoma/genética
7.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971769

RESUMO

Contrary to the conserved Elongator composition in yeast, animals, and plants, molecular functions and catalytic activities of the complex remain controversial. Elongator was identified as a component of elongating RNA polymerase II holoenzyme in yeast, animals, and plants. Furthermore, it was suggested that Elonagtor facilitates elongation of transcription via histone acetyl transferase activity. Accordingly, phenotypes of Arabidopsis elo mutants, which show development, growth, or immune response defects, correlate with transcriptional downregulation and the decreased histone acetylation in the coding regions of crucial genes. Plant Elongator was also implicated in other processes: transcription and processing of miRNA, regulation of DNA replication by histone acetylation, and acetylation of alpha-tubulin. Moreover, tRNA modification, discovered first in yeast and confirmed in plants, was claimed as the main activity of Elongator, leading to specificity in translation that might also result indirectly in a deficiency in transcription. Heterologous overexpression of individual Arabidopsis Elongator subunits and their respective phenotypes suggest that single Elongator subunits might also have another function next to being a part of the complex. In this review, we shall present the experimental evidence of all molecular mechanisms and catalytic activities performed by Elongator in nucleus and cytoplasm of plant cells, which might explain how Elongator regulates growth, development, and immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Elongação da Transcrição Genética/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Replicação do DNA/fisiologia , DNA de Plantas/biossíntese , DNA de Plantas/genética , Histona Acetiltransferases/genética , Complexos Multienzimáticos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética
8.
New Phytol ; 221(2): 1101-1116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30156703

RESUMO

Covalent modifications of histones are essential to control a wide range of processes during development and adaptation to environmental changes. With the establishment of reference epigenomes, patterns of histone modifications were correlated with transcriptionally active or silenced genes. These patterns imply the need for the precise and dynamic coordination of different histone-modifying enzymes to control transcription at a given gene. Classically, the influence of these enzymes on gene expression is examined separately and their interplays rarely established. In Arabidopsis, HISTONE MONOUBIQUITINATION2 (HUB2) mediates H2B monoubiquitination (H2Bub1), whereas SET DOMAIN GROUP8 (SDG8) catalyzes H3 lysine 36 trimethylation (H3K36me3). In this work, we crossed hub2 with sdg8 mutants to elucidate their functional relationships. Despite similar phenotypic defects, sdg8 and hub2 mutations broadly affect genome transcription and plant growth and development synergistically. Also, whereas H3K4 methylation appears largely dependent on H2Bub1, H3K36me3 and H2Bub1 modifications mutually reinforce each other at some flowering time genes. In addition, SDG8 and HUB2 jointly antagonize the increase of the H3K27me3 repressive mark. Collectively, our data provide an important insight into the interplay between histone marks and highlight their interactive complexity in regulating chromatin landscape which might be necessary to fine-tune transcription and ensure plant developmental plasticity.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas , Histonas/genética , Lisina/metabolismo , Metilação , Mutação , Motivos de Nucleotídeos , Transcrição Gênica , Ubiquitinação
9.
Plant Physiol ; 177(2): 447-464, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29678859

RESUMO

The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GSyellow, which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GSyellow tag in the dicot Arabidopsis (Arabidopsis thaliana) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GSyellow tag, along the growth zone of the maize (Zea mays) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GSyellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research.


Assuntos
Substâncias Luminescentes/metabolismo , Proteínas de Plantas/análise , Mapeamento de Interação de Proteínas/métodos , Zea mays/metabolismo , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunoprecipitação da Cromatina/métodos , Substâncias Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/análise , Transativadores/genética , Transativadores/metabolismo , Zea mays/genética
10.
Proc Natl Acad Sci U S A ; 113(10): 2768-73, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26888284

RESUMO

The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína Fosfatase 2/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Modelos Biológicos , Mutação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Plant J ; 90(6): 1156-1175, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28257158

RESUMO

The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves.


Assuntos
Beta vulgaris/genética , Metilação de DNA/fisiologia , Elementos de DNA Transponíveis/genética , Retroelementos/genética , Retroelementos/fisiologia , Metilação de DNA/genética , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant Cell ; 27(6): 1605-19, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26036253

RESUMO

Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Zea mays/genética , Sequência Conservada/genética , Sequência Conservada/fisiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Espectrometria de Massas em Tandem
13.
Biochim Biophys Acta ; 1859(8): 1025-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27354117

RESUMO

Elongator (Elp) genes were identified in plants by the leaf growth-altering elo mutations in the yeast (Saccharomyces cerevisiae) gene homologs. Protein purification of the Elongator complex from Arabidopsis thaliana cell cultures confirmed its conserved structure and composition. The Elongator function in plant growth, development, and immune response is well-documented in the elp/elo mutants and correlated with the histone acetyl transferase activity of the ELP3/ELO3 subunit at the coding part of key regulatory genes of developmental and immune response pathways. Here we will focus on additional roles in transcription, such as the cytosine demethylation activity of ELP3/ELO3 at gene promoter regions and primary microRNA transcription and processing through the ELP2 subunit interaction with components of the small interference RNA machinery. Furthermore, specific interactions and upstream regulators support a role for Elongator in transcription and might reveal mechanistic insights into the specificity of the histone acetyl transferase and cytosine demethylation activities for target genes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histona Acetiltransferases/genética , Proteínas de Ligação a RNA/genética , Arabidopsis/classificação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/química , Cromatina/metabolismo , Metilação de DNA , Histona Acetiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
14.
Plant Cell Physiol ; 58(5): 962-975, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340173

RESUMO

F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
15.
BMC Plant Biol ; 17(1): 115, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683715

RESUMO

BACKGROUND: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome-wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. METHODS: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. RESULTS: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. CONCLUSIONS: Plant-RRBS offers high-throughput and broad, genome-dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations.


Assuntos
Metilação de DNA , Técnicas Genéticas , Genoma de Planta , Citosina/metabolismo , Enzimas de Restrição do DNA , Oryza , Sulfitos
16.
Plant Physiol ; 171(2): 773-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208282

RESUMO

Protein aggregation is determined by short (5-15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form ß-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme α-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Fluorescência Verde , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Transdução de Sinais , Zea mays/citologia , Zea mays/metabolismo
17.
Plant Physiol ; 172(2): 858-873, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503603

RESUMO

Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17 Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm5 tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Citosol/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dano ao DNA , Regulação da Expressão Gênica de Plantas , Glutarredoxinas/genética , Immunoblotting , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
18.
Plant Physiol ; 169(3): 2200-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26417009

RESUMO

TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/ß-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Tetraspaninas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Genes Reporter , Família Multigênica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Tetraspaninas/genética
19.
Plant Physiol ; 168(4): 1338-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26082400

RESUMO

To increase both the yield potential and stability of crops, integrated breeding strategies are used that have mostly a direct genetic basis, but the utility of epigenetics to improve complex traits is unclear. A better understanding of the status of the epigenome and its contribution to agronomic performance would help in developing approaches to incorporate the epigenetic component of complex traits into breeding programs. Starting from isogenic canola (Brassica napus) lines, epilines were generated by selecting, repeatedly for three generations, for increased energy use efficiency and drought tolerance. These epilines had an enhanced energy use efficiency, drought tolerance, and nitrogen use efficiency. Transcriptome analysis of the epilines and a line selected for its energy use efficiency solely revealed common differentially expressed genes related to the onset of stress tolerance-regulating signaling events. Genes related to responses to salt, osmotic, abscisic acid, and drought treatments were specifically differentially expressed in the drought-tolerant epilines. The status of the epigenome, scored as differential trimethylation of lysine-4 of histone 3, further supported the phenotype by targeting drought-responsive genes and facilitating the transcription of the differentially expressed genes. From these results, we conclude that the canola epigenome can be shaped by selection to increase energy use efficiency and stress tolerance. Hence, these findings warrant the further development of strategies to incorporate epigenetics into breeding.


Assuntos
Ácido Abscísico/metabolismo , Brassica napus/genética , Epigênese Genética , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Brassica napus/fisiologia , Cruzamento , Produtos Agrícolas , Secas , Metabolismo Energético , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Osmose , Fenótipo , Análise de Sequência de RNA , Estresse Fisiológico
20.
Proteomics ; 14(19): 2109-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24733746

RESUMO

The elongation phase of the RNA polymerase II (RNAPII) transcription process is dynamic and regulated. Elongator and SUPPRESSOR OF Ty4 (SPT4)/SPT5 are transcript elongation factors that contribute to the regulation of mRNA synthesis by RNA polymerase II in the chromatin context. Recently, the Elongator complex consisting of six subunits and the SPT4/SPT5 heterodimer were isolated from Arabidopsis. Mutant plants affected in the expression of Elongator or SPT4/SPT5 share various auxin-signaling phenotypes. In line with that observation, auxin-related genes are prominent among the genes differentially expressed in these mutants. Exemplified by Elongator and SPT4/SPT5, we discuss here the role that transcript elongation factors may play in the control of plant growth and development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , RNA Polimerase II/genética , Proteínas Repressoras/genética , Elongação da Transcrição Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Ácidos Indolacéticos , Complexos Multiproteicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteoma , Proteômica , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa