RESUMO
In this article for the Highlights of 2023 Series, significant advancements in pediatric immunology are discussed, focusing on new diagnostic and therapeutic approaches. Key studies include the integration of genomic and proteomic profiling for better diagnosis of inborn errors of immunity, the impact of nongenetic factors such as autoantibodies on immune responses, the promising use of Janus kinase inhibitors and chimeric antigen receptor-T cell therapy for treating immune deficiencies and autoimmune diseases and the potential for a curative approach using prime editing. These developments mark a shift toward personalized and precision medicine in pediatric immunology.
Assuntos
Alergia e Imunologia , Pediatria , Criança , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Medicina de Precisão , Proteômica/métodosRESUMO
PURPOSE: Familial Mediterranean Fever (FMF) and Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND) are clinically distinct autoinflammatory disorders caused by mutations in the pyrin-encoding gene MEFV. We investigated the transcriptional, phenotypical, and functional characteristics of patient neutrophils to explore their potential role in FMF and PAAND pathophysiology. METHODS: RNA sequencing was performed to discover transcriptional aberrancies. The phenotypical features, degranulation properties, and phagocytic capacity of neutrophils were assessed by flow cytometry. Production of reactive oxygen species (ROS), myeloperoxidase (MPO) release, and chemotactic responses were investigated via chemiluminescence, ELISA, and Boyden chamber assays, respectively. RESULTS: Neutrophils from PAAND and FMF patients showed a partially overlapping, activated gene expression profile with increased expression of S100A8, S100A9, S100A12, IL-4R, CD48, F5, MMP9, and NFKB. Increased MMP9 and S100A8/A9 expression levels were accompanied by high plasma concentrations of the encoded proteins. Phenotypical analysis revealed that neutrophils from FMF patients exhibited an immature character with downregulation of chemoattractant receptors CXCR2, C5aR, and BLTR1 and increased expression of Toll-like receptor 4 (TLR4) and TLR9. PAAND neutrophils displayed an increased random, but reduced CXCL8-induced migration. A tendency for enhanced random migration was observed for FMF neutrophils. PAAND neutrophils showed a moderately but significantly enhanced phagocytic activity as opposed to neutrophils from FMF patients. Neutrophils from both patient groups showed increased MPO release and ROS production. CONCLUSIONS: Neutrophils from patients with FMF and PAAND, carrying different mutations in the MEFV gene, share a pro-inflammatory phenotype yet demonstrate diverse features, underscoring the distinction between both diseases.
Assuntos
Febre Familiar do Mediterrâneo , Inflamação , Neutrófilos/imunologia , Pirina/genética , Dermatopatias , Adulto , Idoso , Calgranulina A/sangue , Calgranulina B/sangue , Citocinas/sangue , Febre Familiar do Mediterrâneo/sangue , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Masculino , Metaloproteinase 9 da Matriz/sangue , Pessoa de Meia-Idade , Peroxidase/imunologia , Fagocitose , Fenótipo , Dermatopatias/sangue , Dermatopatias/genética , Dermatopatias/imunologia , Transcriptoma , Adulto JovemRESUMO
OBJECTIVE: In 2016 specific heterozygous gain-of-function mutations in the Mediterranean fever gene MEFV were reported as causal for a distinct autoinflammatory disease coined pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). We sought to provide an extended report on clinical manifestations in PAAND patients to date and evaluate the efficacy and safety of treatment with the IL-1-blocking agent anakinra. METHODS: We undertook an open-label pilot study with anakinra. Three patients were recruited in a preliminary phase of the study with the intention to expand the treatment cohort in case of a favourable response. Acute-phase reactants and plasma cytokine levels were monitored throughout. Skin biopsies at baseline and at week 12 were stained for relevant cytokines. Available clinical data on treatment responses were retrospectively collected on additional patients. RESULTS: The three patients from the preliminary phase of the study [patients 1-3 (P1-P3)] demonstrated one failed and two partial treatment responses, where one patient opted to continue treatment with anakinra and the other favoured adalimumab. While a partial systemic response was observed, there was no appreciable effect of anakinra on the prominent cutaneous manifestations, reflected in residual local inflammatory cytokine expression in lesional skin. These observations did not warrant further expansion of the treatment cohort. Clinical data was retrospectively collected on an additional eight patients (P4-P11), highlighting both dominant and recessive inheritance with variable penetrance in PAAND and common gastrointestinal involvement that was not previously appreciated. CONCLUSION: In our experience, while anakinra appears safe, it was not superior to biologicals targeting TNF-α in PAAND despite evidence directly implicating dysregulated IL-1ß signalling.
Assuntos
Antirreumáticos/uso terapêutico , Doenças Hereditárias Autoinflamatórias/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Transtornos Leucocíticos/congênito , Dermatopatias Genéticas/tratamento farmacológico , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Transtornos Leucocíticos/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fenótipo , Projetos Piloto , Pirina/genéticaRESUMO
BACKGROUND: The molecular cause of severe congenital neutropenia (SCN) is unknown in 30% to 50% of patients. SEC61A1 encodes the α-subunit of the Sec61 complex, which governs endoplasmic reticulum protein transport and passive calcium leakage. Recently, mutations in SEC61A1 were reported to be pathogenic in common variable immunodeficiency and glomerulocystic kidney disease. OBJECTIVE: Our aim was to expand the spectrum of SEC61A1-mediated disease to include autosomal dominant SCN. METHODS: Whole exome sequencing findings were validated, and reported mutations were compared by Western blotting, Ca2+ flux assays, differentiation of transduced HL-60 cells, in vitro differentiation of primary CD34 cells, quantitative PCR for unfolded protein response (UPR) genes, and single-cell RNA sequencing on whole bone marrow. RESULTS: We identified a novel de novo missense mutation in SEC61A1 (c.A275G;p.Q92R) in a patient with SCN who was born to nonconsanguineous Belgian parents. The mutation results in diminished protein expression, disturbed protein translocation, and an increase in calcium leakage from the endoplasmic reticulum. In vitro differentiation of CD34+ cells recapitulated the patient's clinical arrest in granulopoiesis. The impact of Q92R-Sec61α1 on neutrophil maturation was validated by using HL-60 cells, in which transduction reduced differentiation into CD11b+CD16+ cells. A potential mechanism for this defect is the uncontrolled initiation of the unfolded protein stress response, with single-cell analysis of primary bone marrow revealing perturbed UPR in myeloid precursors and in vitro differentiation of primary CD34+ cells revealing upregulation of CCAAT/enhancer-binding protein homologous protein and immunoglobulin heavy chain binding protein UPR-response genes. CONCLUSION: Specific mutations in SEC61A1 cause SCN through dysregulation of the UPR.
Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Mutação/genética , Neutropenia/congênito , Neutrófilos/fisiologia , Canais de Translocação SEC/genética , Antígenos CD34/metabolismo , Transtornos Cromossômicos , Feminino , Genes Dominantes , Células HL-60 , Humanos , Neutropenia/genética , Linhagem , Análise de Célula Única , Resposta a Proteínas não Dobradas/genética , Sequenciamento do Exoma , Adulto JovemRESUMO
OBJECTIVES: Juvenile idiopathic arthritis (JIA) is the most common class of childhood rheumatic diseases, with distinct disease subsets that may have diverging pathophysiological origins. Both adaptive and innate immune processes have been proposed as primary drivers, which may account for the observed clinical heterogeneity, but few high-depth studies have been performed. METHODS: Here we profiled the adaptive immune system of 85 patients with JIA and 43 age-matched controls with indepth flow cytometry and machine learning approaches. RESULTS: Immune profiling identified immunological changes in patients with JIA. This immune signature was shared across a broad spectrum of childhood inflammatory diseases. The immune signature was identified in clinically distinct subsets of JIA, but was accentuated in patients with systemic JIA and those patients with active disease. Despite the extensive overlap in the immunological spectrum exhibited by healthy children and patients with JIA, machine learning analysis of the data set proved capable of discriminating patients with JIA from healthy controls with ~90% accuracy. CONCLUSIONS: These results pave the way for large-scale immune phenotyping longitudinal studies of JIA. The ability to discriminate between patients with JIA and healthy individuals provides proof of principle for the use of machine learning to identify immune signatures that are predictive to treatment response group.
Assuntos
Imunidade Adaptativa/imunologia , Artrite Juvenil/imunologia , Imunofenotipagem/métodos , Aprendizado de Máquina , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Humanos , MasculinoRESUMO
OBJECTIVES: NFIL3 is a key immunological transcription factor, with knockout mice studies identifying functional roles in multiple immune cell types. Despite the importance of NFIL3, little is known about its function in humans. METHODS: Here, we characterised a kindred of two monozygotic twin girls with juvenile idiopathic arthritis at the genetic and immunological level, using whole exome sequencing, single cell sequencing and flow cytometry. Parallel studies were performed in a mouse model. RESULTS: The patients inherited a novel p.M170I in NFIL3 from each of the parents. The mutant form of NFIL3 demonstrated reduced stability in vitro. The potential contribution of this mutation to arthritis susceptibility was demonstrated through a preclinical model, where Nfil3-deficient mice upregulated IL-1ß production, with more severe arthritis symptoms on disease induction. Single cell sequencing of patient blood quantified the transcriptional dysfunctions present across the peripheral immune system, converging on IL-1ß as a pivotal cytokine. CONCLUSIONS: NFIL3 mutation can sensitise for arthritis development, in mice and humans, and rewires the innate immune system for IL-1ß over-production.
Assuntos
Artrite Juvenil/genética , Artrite Juvenil/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Mutação/imunologia , Animais , Criança , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Gêmeos Monozigóticos/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome. OBJECTIVE: We studied 3 patients from 2 unrelated kindreds harboring compound heterozygous or homozygous stem II variants in RNU4ATAC to gain insight into the mechanisms behind this disorder. METHODS: We systematically profiled the immunologic and hematologic compartments of the 3 patients with Roifman syndrome and performed RNA sequencing to unravel important splicing defects in both cell lineages. RESULTS: The patients exhibited a dramatic reduction in B-cell numbers, with differentiation halted at the transitional B-cell stage. Despite abundant B-cell activating factor availability, development past this B-cell activating factor-dependent stage was crippled, with disturbed minor splicing of the critical mitogen-activated protein kinase 1 signaling component. In the hematologic compartment patients with Roifman syndrome demonstrated defects in megakaryocyte differentiation, with inadequate generation of proplatelets. Platelets from patients with Roifman syndrome were rounder, with increased tubulin and actin levels, and contained increased α-granule and dense granule markers. Significant minor intron retention in 354 megakaryocyte genes was observed, including DIAPH1 and HPS1, genes known to regulate platelet and dense granule formation, respectively. CONCLUSION: Together, our results provide novel molecular and cellular data toward understanding the immunologic and hematologic features of Roifman syndrome.
Assuntos
Linfócitos B/fisiologia , Plaquetas/fisiologia , Cardiomiopatias/genética , Síndromes de Imunodeficiência/genética , Megacariócitos/fisiologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Osteocondrodisplasias/genética , Células Precursoras de Linfócitos B/fisiologia , RNA Nuclear Pequeno/genética , Doenças Retinianas/genética , Adolescente , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Humanos , Lactente , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Linhagem , Doenças da Imunodeficiência Primária , Processamento de Proteína/genética , Transdução de Sinais/genética , Sequenciamento do ExomaRESUMO
Until recently the most common autoinflammatory diseases (AIDs) associated with bone disease in childhood included a few genetically complex (chronic non-bacterial osteomyelitis, synovitis, acne, pustulosis, hyperostosis and osteitis syndrome) and monogenic (Majeed syndrome, deficiency of IL-1 receptor antagonist, cherubism) AIDs. However, the spectrum of monogenic AIDs associated with bone manifestations has markedly expanded to include both recently identified diseases such as the type I interferonopathies and also newly recognized bone dysplasias in already established AIDs. In addition, we propose that some known bone dysplasia syndromes, especially those presenting with hyperostosis and associated systemic inflammation, be classified as AIDs. Collectively, we provide an overview of the diverse bone manifestations identified in the genetically defined AIDs, discuss the hypotheses of the underlying pathophysiological mechanisms and highlight potential novel therapeutic strategies.
Assuntos
Autoimunidade , Doenças Ósseas , Doenças Hereditárias Autoinflamatórias , Interleucinas/imunologia , Doenças Ósseas/diagnóstico , Doenças Ósseas/etiologia , Doenças Ósseas/imunologia , Doenças Hereditárias Autoinflamatórias/complicações , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/imunologia , HumanosAssuntos
Linfócitos B/patologia , Fator de Transcrição Ikaros/genética , Lúpus Eritematoso Sistêmico/diagnóstico , Mutação/genética , Animais , Anticorpos Antinucleares/metabolismo , Autoimunidade/genética , Diferenciação Celular/genética , Criança , Feminino , Frequência do Gene , Humanos , Inibidor de Coagulação do Lúpus/metabolismo , Lúpus Eritematoso Sistêmico/genética , Camundongos , Células NIH 3T3 , Linhagem , Polimorfismo Genético , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismoRESUMO
Recently, OTULIN haploinsufficiency was linked to enhanced susceptibility to Staphylococcus aureus infections accompanied by local necrosis and systemic inflammation. The pathogenesis observed in haploinsufficient patients differs from the hyperinflammation seen in classical OTULIN-related autoinflammatory syndrome (ORAS) patients and is characterized by increased susceptibility of dermal fibroblasts to S. aureus alpha toxin-inflicted cytotoxic damage. Immunological abnormalities were not observed in OTULIN haploinsufficient patients, suggesting a non-hematopoietic basis. In this research report, we investigated an Otulin+/- mouse model after in vivo provocation with lipopolysaccharide (LPS) to explore the potential role of hematopoietic-driven inflammation in OTULIN haploinsufficiency. We observed a hyperinflammatory signature in LPS-provoked Otulin+/- mice, which was driven by CD64+ monocytes and macrophages. Bone marrow-derived macrophages (BMDMs) of Otulin+/- mice demonstrated higher proinflammatory cytokine secretion after in vitro stimulation with LPS or polyinosinic:polycytidylic acid (Poly(I:C)). Our experiments in full and mixed bone marrow chimeric mice suggest that, in contrast to humans, the observed inflammation was mainly driven by the hematopoietic compartment with cell-extrinsic effects likely contributing to inflammatory outcomes. Using an OTULIN haploinsufficient mouse model, we validated the role of OTULIN in the regulation of environmentally directed inflammation.
Assuntos
Haploinsuficiência , Inflamação , Lipopolissacarídeos , Macrófagos , Animais , Camundongos , Inflamação/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo , Poli I-C , Camundongos Endogâmicos C57BL , Camundongos Knockout , HumanosRESUMO
OBJECTIVES: To evaluate immunogenicity, effectiveness and safety of COVID-19 vaccination in patients with pediatric autoimmune inflammatory rheumatic disease (pedAIIRD). METHODS: A prospective cohort study was performed at the pediatric rheumatology department of the Wilhelmina Children's Hospital in Utrecht, the Netherlands. Vaccination dates, COVID-19 cases and vaccine-related adverse events (AEs) were registered for all pedAIIRD patients during regular clinic visits from March 2021 - August 2022. SARS-CoV-2 IgG antibody levels and T-cell responses were measured from serum samples after vaccination, and clinical and drug therapy data were collected from electronic medical records. Rate of COVID-19 disease was compared between vaccinated and unvaccinated patients in a time-varying Cox regression analysis. RESULTS: A total of 157 patients were included in this study and 88 % had juvenile idiopathic arthritis (JIA). One hundred thirty-seven patients were fully vaccinated, of which 47 % used biological agents at the time of vaccination, and 20 patients were unvaccinated. Geometric mean concentrations (GMCs) of post-vaccine antibody levels against SARS-CoV-2 were above the threshold for positivity in patients who did and did not use biological agents at the time of vaccination, although biological users demonstrated significantly lower antibody levels (adjusted GMC ratio: 0.38, 95 % CI: 0.21 - 0.70). T-cell responses were adequate in all but two patients (9 %). The adjusted rate of reported COVID-19 was significantly lower for fully vaccinated patients compared to non-vaccinated patients (HR: 0.53, 95 % CI: 0.29 - 0.97). JIA disease activity scores were not significantly different after vaccination, and no serious AEs were reported. CONCLUSIONS: COVID-19 mRNA vaccines were immunogenic (both cellular and humoral), effective and safe in a large cohort of pedAIIRD patients despite their use of immunosuppressive medication.
Assuntos
Artrite Juvenil , Vacinas contra COVID-19 , COVID-19 , Criança , Humanos , Anticorpos Antivirais , Artrite Juvenil/complicações , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Imunogenicidade da Vacina , Estudos Prospectivos , Doenças Reumáticas , RNA Mensageiro , SARS-CoV-2 , VacinaçãoRESUMO
Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.
Assuntos
Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio/genética , Sinalização do Cálcio/imunologia , Homeostase , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/imunologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Isoformas de Proteínas/metabolismo , Doenças do Sistema Imunitário/metabolismoRESUMO
BACKGROUND: Cytochrome P450 4F3 (CYP4F3) is an ω-hydroxylase that oxidizes leukotriene B4 (LTB4), prostaglandins, and fatty acid epoxides. LTB4 is synthesized by leukocytes and acts as a chemoattractant for neutrophils, making it an essential component of the innate immune system. Recently, involvement of the LTB4 pathway was reported in various immunological disorders such as asthma, arthritis, and inflammatory bowel disease. We report a 26-year-old female with a complex immune phenotype, mainly marked by exhaustion, muscle weakness, and inflammation-related conditions. The molecular cause is unknown, and symptoms have been aggravating over the years. METHODS: Whole exome sequencing was performed and validated; flow cytometry and enzyme-linked immunosorbent assay were used to describe patient's phenotype. Function and impact of the mutation were investigated using molecular analysis: co-immunoprecipitation, western blot, and enzyme-linked immunosorbent assay. Capillary electrophoresis with ultraviolet detection was used to detect LTB4 and its metabolite and in silico modelling provided structural information. RESULTS: We present the first report of a patient with a heterozygous de novo missense mutation c.C1123 > G;p.L375V in CYP4F3 that severely impairs its activity by 50% (P < 0.0001), leading to reduced metabolization of the pro-inflammatory LTB4. Systemic LTB4 levels (1034.0 ± 75.9 pg/mL) are significantly increased compared with healthy subjects (305.6 ± 57.0 pg/mL, P < 0.001), and immune phenotyping shows increased total CD19+ CD27- naive B cells (25%) and decreased total CD19+ CD27+ IgD- switched memory B cells (19%). The mutant CYP4F3 protein is stable and binding with its electron donors POR and Cytb5 is unaffected (P > 0.9 for both co-immunoprecipitation with POR and Cytb5). In silico modelling of CYP4F3 in complex with POR and Cytb5 suggests that the loss of catalytic activity of the mutant CYP4F3 is explained by a disruption of an α-helix that is crucial for the electron shuffling between the electron carriers and CYP4F3. Interestingly, zileuton still inhibits ex vivo LTB4 production in patient's whole blood to 2% of control (P < 0.0001), while montelukast and fluticasone do not (99% and 114% of control, respectively). CONCLUSIONS: A point mutation in the catalytic domain of CYP4F3 is associated with high leukotriene B4 plasma levels and features of a more naive adaptive immune response. Our data provide evidence for the pathogenicity of the CYP4F3 variant as a cause for the observed clinical features in the patient. Inhibitors of the LTB4 pathway such as zileuton show promising effects in blocking LTB4 production and might be used as a future treatment strategy.
Assuntos
Leucotrieno B4 , Mutação de Sentido Incorreto , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450/genética , Elétrons , Feminino , Humanos , Leucotrieno B4/metabolismoRESUMO
The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.
Assuntos
Toxinas Bacterianas , Síndrome de Cri-du-Chat , Endopeptidases , Haploinsuficiência , Proteínas Hemolisinas , Infecções Estafilocócicas , Staphylococcus aureus , Toxinas Bacterianas/imunologia , Síndrome de Cri-du-Chat/genética , Síndrome de Cri-du-Chat/imunologia , Endopeptidases/genética , Haploinsuficiência/genética , Haploinsuficiência/imunologia , Proteínas Hemolisinas/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular/genética , Necrose , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologiaRESUMO
Mitochondrial DNA (mtDNA) has been suggested to drive immune system activation, but the induction of interferon signaling by mtDNA has not been demonstrated in a Mendelian mitochondrial disease. We initially ascertained two patients, one with a purely neurological phenotype and one with features suggestive of systemic sclerosis in a syndromic context, and found them both to demonstrate enhanced interferon-stimulated gene (ISG) expression in blood. We determined each to harbor a previously described de novo dominant-negative heterozygous mutation in ATAD3A, encoding ATPase family AAA domain-containing protein 3A (ATAD3A). We identified five further patients with mutations in ATAD3A and recorded up-regulated ISG expression and interferon α protein in four of them. Knockdown of ATAD3A in THP-1 cells resulted in increased interferon signaling, mediated by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Enhanced interferon signaling was abrogated in THP-1 cells and patient fibroblasts depleted of mtDNA. Thus, mutations in the mitochondrial membrane protein ATAD3A define a novel type I interferonopathy.
Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Interferons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Mutação , Nucleotidiltransferases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Criança , Pré-Escolar , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Genes Dominantes , Humanos , Interferons/genética , Masculino , Proteínas Mitocondriais/metabolismo , Nucleotidiltransferases/genética , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais , Células THP-1 , Adulto JovemRESUMO
Multicentric Castleman disease (MCD) is a rare entity that, unlike unicentric Castleman disease, involves generalized polyclonal lymphoproliferation, systemic inflammation, and multiple-organ system failure resulting from proinflammatory hypercytokinemia, including, in particular, interleukin-6. A subset of MCD is caused by human herpesvirus-8 (HHV-8), although the etiology for HHV-8-negative, idiopathic MCD (iMCD) cases is unknown at present. Recently, a consensus was reached on the diagnostic criteria for iMCD to aid in diagnosis, recognize mimics, and initiate prompt treatment. Pediatric iMCD remains particularly rare, and differentiation from MCD mimics in children presenting with systemic inflammation and lymphoproliferation is a challenge. We report on a young boy who presented with a HHV-8-negative, iMCD-like phenotype and was found to suffer from the monogenic disorder deficiency of adenosine deaminase 2 (DADA2), which is caused by loss-of-function mutations in CECR1 DADA2 prototypic features include early-onset ischemic and hemorrhagic strokes, livedoid rash, systemic inflammation, and polyarteritis nodosa vasculopathy, but marked clinical heterogeneity has been observed. Our patient's presentation remains unique, with predominant systemic inflammation, lymphoproliferation, and polyclonal hypergammaglobulinemia but without apparent immunodeficiency. On the basis of the iMCD-like phenotype with elevated interleukin-6 expression, treatment with tocilizumab was initiated, resulting in immediate normalization of clinical and biochemical parameters. In conclusion, iMCD and DADA2 should be considered in the differential diagnosis of children presenting with systemic inflammation and lymphoproliferation. We describe the first case of DADA2 that mimics the clinicopathologic features of iMCD, and our report extends the clinical spectrum of DADA2 to include predominant immune activation and lymphoproliferation.
Assuntos
Adenosina Desaminase/deficiência , Hiperplasia do Linfonodo Gigante/sangue , Hiperplasia do Linfonodo Gigante/diagnóstico , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Pré-Escolar , Diagnóstico Diferencial , Humanos , MasculinoRESUMO
PURPOSE OF REVIEW: Next-generation sequencing, especially whole exome sequencing (WES), has revolutionized the molecular diagnosis of inborn errors of immunity. This review summarizes the generation and analysis of next-generation sequencing data. RECENT FINDINGS: The focus is on prioritizing strategies for unveiling the potential disease-causing variant. We also highlighted oversights and imperfections of WES and targeted panel sequencing, as well as the need for functional validation. SUMMARY: The information is crucial for a judicious use of WES by researchers, but even more so by the clinical immunologist.
Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento do Exoma/métodos , Exoma/genética , Imunidade/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Triagem Neonatal , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Pyrin responds to pathogen signals and loss of cellular homeostasis by forming an inflammasome complex that drives the cleavage and secretion of interleukin-1ß (IL-1ß). Mutations in the B30.2/SPRY domain cause pathogen-independent activation of pyrin and are responsible for the autoinflammatory disease familial Mediterranean fever (FMF). We studied a family with a dominantly inherited autoinflammatory disease, distinct from FMF, characterized by childhood-onset recurrent episodes of neutrophilic dermatosis, fever, elevated acute-phase reactants, arthralgia, and myalgia/myositis. The disease was caused by a mutation in MEFV, the gene encoding pyrin (S242R). The mutation results in the loss of a 14-3-3 binding motif at phosphorylated S242, which was not perturbed by FMF mutations in the B30.2/SPRY domain. However, loss of both S242 phosphorylation and 14-3-3 binding was observed for bacterial effectors that activate the pyrin inflammasome, such as Clostridium difficile toxin B (TcdB). The S242R mutation thus recapitulated the effect of pathogen sensing, triggering inflammasome activation and IL-1ß production. Successful therapy targeting IL-1ß has been initiated in one patient, resolving pyrin-associated autoinflammation with neutrophilic dermatosis. This disease provides evidence that a guard-like mechanism of pyrin regulation, originally identified for Nod-like receptors in plant innate immunity, also exists in humans.