Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(11): 5546-5560, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053980

RESUMO

Bacillus cereus strain CPT56D-587-MTF (CPTF) was isolated from the highly contaminated Oak Ridge Reservation (ORR) subsurface. This site is contaminated with high levels of nitric acid and multiple heavy metals. Amplicon sequencing of the 16S rRNA genes (V4 region) in sediment from this area revealed an amplicon sequence variant (ASV) with 100% identity to the CPTF 16S rRNA sequence. Notably, this CPTF-matching ASV had the highest relative abundance in this community survey, with a median relative abundance of 3.77% and comprised 20%-40% of reads in some samples. Pangenomic analysis revealed that strain CPTF has expanded genomic content compared to other B. cereus species-largely due to plasmid acquisition and expansion of transposable elements. This suggests that these features are important for rapid adaptation to native environmental stressors. We connected genotype to phenotype in the context of the unique geochemistry of the site. These analyses revealed that certain genes (e.g. nitrate reductase, heavy metal efflux pumps) that allow this strain to successfully occupy the geochemically heterogenous microniches of its native site are characteristic of the B. cereus species while others such as acid tolerance are mobile genetic element associated and are generally unique to strain CPTF.


Assuntos
Bacillus cereus , Metais Pesados , RNA Ribossômico 16S/genética , Bacillus cereus/genética , Genômica , Filogenia
2.
Environ Microbiol ; 23(2): 1199-1209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283951

RESUMO

Soil aggregates, with complex spatial and nutritional heterogeneity, are clearly important for regulating microbial community ecology and biogeochemistry in soils. However, how the taxonomic composition and functional attributes of N-cycling-microbes within different soil particle-size fractions under a long-term fertilization treatment remains largely unknown. Here, we examined the composition and metabolic potential for urease activity, nitrification, N2 O production and reduction of the microbial communities attached to different sized soil particles (2000-250, 250-53 and <53 µm) using a functional gene microarray (GeoChip) and functional assays. We found that urease activity and nitrification were higher in <53 µm fractions, whereas N2 O production and reduction rates were greater in 2000-250 and 250-53 µm across different fertilizer regimes. The abundance of key N-cycling genes involved in anammox, ammonification, assimilatory and dissimilatory N reduction, denitrification, nitrification and N2 -fixation detected by GeoChip increased as soil aggregate size decreased; and the particular key genes abundance (e.g., ureC, amoA, narG, nirS/K) and their corresponding activity were uncoupled. Aggregate fraction exerted significant impacts on N-cycling microbial taxonomic composition, which was significantly shaped by soil nutrition. Taken together, these findings indicate the important roles of soil aggregates in differentiating N-cycling metabolic potential and taxonomic composition, and provide empirical evidence that nitrogen metabolism potential and community are uncoupled due to aggregate heterogeneity.


Assuntos
Microbiota/fisiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Microbiologia do Solo , Fertilizantes/análise , Genes Microbianos , Microbiota/genética , Nitrificação/genética , Nitrogênio/análise , Ciclo do Nitrogênio/genética , Óxido Nitroso/metabolismo , Solo/química , Urease/genética , Urease/metabolismo
3.
Environ Sci Technol ; 54(9): 5884-5892, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32259441

RESUMO

Scientific understanding of microbial biogeography and assembly is lacking for activated sludge microbial communities, even though the diversity of microbial communities in wastewater treatment plants (WWTPs) is thought to have a direct influence on system performance. Here, utilizing large-scale 16S rRNA gene data generated from 211 activated sludge samples collected from 15 cities across China, we show activated sludge microbes, whose growth and metabolism can be regulated followed with the metabolic theory of ecology with an apparent Ea value (apparent activation energy) of 0.08 eV. WWTPs at a lower latitude tend to harbor a more diverse array of microorganisms. In agreement with the general understanding, the activated sludge microbial assembly was mainly driven by deterministic processes and the mean annual temperature was identified as the most important factor affecting the microbial community structure. The treatment process types with similar microbial growth types and functions had a distinct impact on the activated sludge microbial community structure only when WWTPs were located near each other and received similar influent. Overall, these findings provide us with a deeper understanding of activated sludge microbial communities from an ecological perspective. Moreover, these findings suggest that, for a given set of performance characteristics (e.g., combined nitrification, denitrification, and phosphorus removal), it may be difficult to employ common engineering levers to control additional aspects of community structure due to the influence of natural environmental factors.


Assuntos
Microbiota , Águas Residuárias , Reatores Biológicos , China , Cidades , RNA Ribossômico 16S , Esgotos , Eliminação de Resíduos Líquidos
4.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079614

RESUMO

Numerous studies have shown that the continuous increase of atmosphere CO2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO2 (eCO2) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO2 at both soil depths, although the stimulation effect of eCO2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO2 increases.IMPORTANCE The concentration of atmospheric carbon dioxide (CO2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO2 (eCO2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.


Assuntos
Dióxido de Carbono/metabolismo , Florestas , Microbiota , Microbiologia do Solo , Microbiota/genética , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Tennessee
5.
Glob Chang Biol ; 24(1): 297-307, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715138

RESUMO

Permafrost soil in high latitude tundra is one of the largest terrestrial carbon (C) stocks and is highly sensitive to climate warming. Understanding microbial responses to warming-induced environmental changes is critical to evaluating their influences on soil biogeochemical cycles. In this study, a functional gene array (i.e., geochip 4.2) was used to analyze the functional capacities of soil microbial communities collected from a naturally degrading permafrost region in Central Alaska. Varied thaw history was reported to be the main driver of soil and plant differences across a gradient of minimally, moderately, and extensively thawed sites. Compared with the minimally thawed site, the number of detected functional gene probes across the 15-65 cm depth profile at the moderately and extensively thawed sites decreased by 25% and 5%, while the community functional gene ß-diversity increased by 34% and 45%, respectively, revealing decreased functional gene richness but increased community heterogeneity along the thaw progression. Particularly, the moderately thawed site contained microbial communities with the highest abundances of many genes involved in prokaryotic C degradation, ammonification, and nitrification processes, but lower abundances of fungal C decomposition and anaerobic-related genes. Significant correlations were observed between functional gene abundance and vascular plant primary productivity, suggesting that plant growth and species composition could be co-evolving traits together with microbial community composition. Altogether, this study reveals the complex responses of microbial functional potentials to thaw-related soil and plant changes and provides information on potential microbially mediated biogeochemical cycles in tundra ecosystems.


Assuntos
Pergelissolo/química , Pergelissolo/microbiologia , Microbiologia do Solo , Tundra , Alaska , Carbono/análise , Mudança Climática , Fungos/metabolismo , Temperatura
6.
Microb Ecol ; 75(2): 543-554, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28932895

RESUMO

Caries is one of the most prevalent and costly infectious diseases affecting humans of all ages. It is initiated by cariogenic supragingival dental plaques forming on saliva-coated tooth surfaces, yet the etiology remains elusive. To determine which microbial populations may predispose a patient to caries, we report here an in-depth and comprehensive view of the microbial community associated with supragingival dental plaque collected from the healthy teeth of caries patients and healthy adults. We found that microbial communities from caries patients had a higher evenness and inter-individual variations but simpler ecological networks compared to healthy controls despite the overall taxonomic structure being similar. Genera including Selenomonas, Treponema, Atopobium, and Bergeriella were distributed differently between the caries and healthy groups with disturbed co-occurrence patterns. In addition, caries and healthy subjects carried different Treponema, Atopobium, and Prevotella species. Moreover, distinct populations of 13 function genes involved in organic acid synthesis, glycan biosynthesis, complex carbohydrate degradation, amino acid synthesis and metabolism, purine and pyrimidine metabolism, isoprenoid biosynthesis, lipid metabolism, and co-factor biosynthesis were present in each of the healthy and caries groups. Our results suggested that the fundamental differences in dental plaque ecology partially explained the patients' susceptibility to caries, and could be used for caries risk prediction in the future.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Gengiva/microbiologia , Microbiota , Adulto , Bactérias/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Mol Ecol ; 26(14): 3839-3850, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28437572

RESUMO

Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long-term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade-long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche-based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas.


Assuntos
Bactérias/classificação , Biodiversidade , Plâncton/classificação , Estações do Ano , Microbiologia da Água , China , Lagos , Filogenia , RNA Ribossômico 16S/genética
8.
Environ Sci Technol ; 51(15): 8519-8529, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28677976

RESUMO

Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.


Assuntos
Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Eletroquímica , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos
9.
Environ Sci Technol ; 51(7): 3609-3620, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28300407

RESUMO

To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4-2, U(VI), NO3-, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4-31 days, whereas Desulfobacterium became dominant at 80-140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.


Assuntos
Água Subterrânea/química , Urânio/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Oxirredução , Sulfatos/química , Óxidos de Enxofre
10.
Proc Natl Acad Sci U S A ; 111(9): E836-45, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550501

RESUMO

Unraveling the drivers of community structure and succession in response to environmental change is a central goal in ecology. Although the mechanisms shaping community structure have been intensively examined, those controlling ecological succession remain elusive. To understand the relative importance of stochastic and deterministic processes in mediating microbial community succession, a unique framework composed of four different cases was developed for fluidic and nonfluidic ecosystems. The framework was then tested for one fluidic ecosystem: a groundwater system perturbed by adding emulsified vegetable oil (EVO) for uranium immobilization. Our results revealed that groundwater microbial community diverged substantially away from the initial community after EVO amendment and eventually converged to a new community state, which was closely clustered with its initial state. However, their composition and structure were significantly different from each other. Null model analysis indicated that both deterministic and stochastic processes played important roles in controlling the assembly and succession of the groundwater microbial community, but their relative importance was time dependent. Additionally, consistent with the proposed conceptual framework but contradictory to conventional wisdom, the community succession responding to EVO amendment was primarily controlled by stochastic rather than deterministic processes. During the middle phase of the succession, the roles of stochastic processes in controlling community composition increased substantially, ranging from 81.3% to 92.0%. Finally, there are limited successional studies available to support different cases in the conceptual framework, but further well-replicated explicit time-series experiments are needed to understand the relative importance of deterministic and stochastic processes in controlling community succession.


Assuntos
Ecossistema , Água Subterrânea/microbiologia , Microbiota/genética , Óleos de Plantas/farmacologia , Microbiologia da Água , Microbiota/efeitos dos fármacos , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie , Processos Estocásticos , Fatores de Tempo
11.
Environ Microbiol ; 18(12): 4739-4754, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27130138

RESUMO

Gut microbiota typically occupy habitats with definable limits/borders that are comparable to oceanic islands. The gut therefore can be regarded as an 'island' for the assembly of microbial communities within the 'sea' of surrounding environments. This study aims to reveal the ecological mechanisms that govern microbiota in the fish gut 'island' ecosystem. Taxonomic compositions, phylogenetic diversity, and community turnover across host development were analyzed via the high-throughput sequencing of 16S rRNA gene amplicons. The results indicate that the Shannon diversity of gut microbiota in the three examined freshwater fish species all significantly decreased with host development, and the dominant bacterial taxa also changed significantly during host development. Null model and phylogenetic-based mean nearest taxon distance (MNTD) analyses suggest that host gut environmental filtering led to the assembly of microbial communities in the fish gut 'island'. However, the phylogenetic clustering of local communities and deterministic processes that governed community turnover became less distinct as the fish developed. The observed mechanisms that shaped fish gut microbiota seemed to be mainly shaped by the gut environment and by some other selective changes accompanying the host development process. These findings greatly enhance our understanding of stage-specific community assembly patterns in the fish gut ecosystem.


Assuntos
Peixes/microbiologia , Microbioma Gastrointestinal , Animais , Ecossistema , Água Doce , Filogenia , RNA Ribossômico 16S/genética
12.
Mol Ecol ; 25(12): 2937-48, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27085668

RESUMO

Soil diazotrophs play important roles in ecosystem functioning by converting atmospheric N2 into biologically available ammonium. However, the diversity and distribution of soil diazotrophic communities in different forests and whether they follow biogeographic patterns similar to macroorganisms still remain unclear. By sequencing nifH gene amplicons, we surveyed the diversity, structure and biogeographic patterns of soil diazotrophic communities across six North American forests (126 nested samples). Our results showed that each forest harboured markedly different soil diazotrophic communities and that these communities followed traditional biogeographic patterns similar to plant and animal communities, including the taxa-area relationship (TAR) and latitudinal diversity gradient. Significantly higher community diversity and lower microbial spatial turnover rates (i.e. z-values) were found for rainforests (~0.06) than temperate forests (~0.1). The gradient pattern of TARs and community diversity was strongly correlated (r(2)  > 0.5) with latitude, annual mean temperature, plant species richness and precipitation, and weakly correlated (r(2)  < 0.25) with pH and soil moisture. This study suggests that even microbial subcommunities (e.g. soil diazotrophs) follow general biogeographic patterns (e.g. TAR, latitudinal diversity gradient), and indicates that the metabolic theory of ecology and habitat heterogeneity may be the major underlying ecological mechanisms shaping the biogeographic patterns of soil diazotrophic communities.


Assuntos
Biodiversidade , Florestas , Microbiologia do Solo , Bactérias/classificação , Carbono/análise , Genes Bacterianos , Nitrogênio/análise , América do Norte , Floresta Úmida , Solo/química
13.
Environ Sci Technol ; 50(20): 10951-10959, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27715012

RESUMO

The removal of arsenic from drinking water sources produces arsenic-bearing wastes, which are disposed of in a variety of ways. Several disposal options involve anaerobic environments, including mixing arsenic waste with cow dung, landfills, anaerobic digesters, and pond sediments. Though poorly understood, the production of gaseous arsenic species in these environments can be a primary goal (cow dung mixing) or an unintended consequence (anaerobic digesters). Once formed, these gaseous arsenic species are readily diluted in the atmosphere. Arsenic volatilization can be mediated by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) or through the enzymes involved in methanogenesis. In this study, methanogenic mesocosms with arsenic-bearing ferric iron waste from an electrocoagulation drinking water treatment system were used to evaluate the role of methanogenesis in arsenic volatilization using methanogen inhibitors. Arsenic volatilization was highest in methanogenic mesocosms, but represented <0.02% of the total arsenic added. 16S rRNA cDNA sequencing, qPCR of mcrA transcripts, and functional gene array-based analysis of arsM expression, revealed that arsenic volatilization correlated with methanogenic activity. Aqueous arsenic concentrations increased in all mesocosms, indicating that unintended contamination may result from disposal in anaerobic environments. This highlights that more research is needed before recommending anaerobic disposal intended to promote arsenic volatilization.

14.
Proc Natl Acad Sci U S A ; 110(22): 8990-5, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671121

RESUMO

The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution.


Assuntos
Evolução Biológica , Ecossistema , Variação Genética , Microbiologia do Solo , Solo/análise , Análise de Variância , Regiões Antárticas , Sequência de Bases , Carbono/metabolismo , Sondas de DNA , Ecologia , Geografia , Metagenômica/métodos , Análise em Microsséries , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , RNA Ribossômico/genética , Análise de Sequência de DNA , Estresse Fisiológico/genética
15.
Environ Microbiol ; 17(3): 566-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24548455

RESUMO

Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Temperatura Baixa/efeitos adversos , Consórcios Microbianos/genética , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Bactérias/genética , Biomassa , China , Clima , Nitrificação , Nitrogênio/análise , Ciclo do Nitrogênio , Oxirredução , Solo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
16.
Appl Environ Microbiol ; 81(13): 4423-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911483

RESUMO

The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum, a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency (>95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes.


Assuntos
Sistemas CRISPR-Cas , Clostridium cellulolyticum/enzimologia , Clostridium cellulolyticum/genética , Desoxirribonuclease I/metabolismo , Marcação de Genes/métodos , Genética Microbiana/métodos , Biologia Molecular/métodos , Recombinação Homóloga , Streptococcus pyogenes/enzimologia , Transformação Bacteriana
17.
Appl Environ Microbiol ; 81(12): 4164-72, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862231

RESUMO

A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.


Assuntos
Biodegradação Ambiental , Água Subterrânea/microbiologia , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Acetatos/metabolismo , Emulsões/química , Análise em Microsséries , Óleos de Plantas , Sulfatos/metabolismo , Fatores de Tempo
18.
BMC Microbiol ; 15: 125, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26084274

RESUMO

BACKGROUND: Although high-throughput sequencing, such as Illumina-based technologies (e.g. MiSeq), has revolutionized microbial ecology, adaptation of amplicon sequencing for environmental microbial community analysis is challenging due to the problem of low base diversity. RESULTS: A new phasing amplicon sequencing approach (PAS) was developed by shifting sequencing phases among different community samples from both directions via adding various numbers of bases (0-7) as spacers to both forward and reverse primers. Our results first indicated that the PAS method substantially ameliorated the problem of unbalanced base composition. Second, the PAS method substantially improved the sequence read base quality (an average of 10 % higher of bases above Q30). Third, the PAS method effectively increased raw sequence throughput (~15 % more raw reads). In addition, the PAS method significantly increased effective reads (9-47 %) and the effective read sequence length (16-96 more bases) after quality trim at Q30 with window 5. In addition, the PAS method reduced half of the sequencing errors (0.54-1.1 % less). Finally, two-step PCR amplification of the PAS method effectively ameliorated the amplification biases introduced by the long barcoded PCR primers. CONCLUSION: The developed strategy is robust for 16S rRNA gene amplicon sequencing. In addition, a similar strategy could also be used for sequencing other genes important to ecosystem functional processes.


Assuntos
Archaea/classificação , Bactérias/classificação , DNA Ribossômico/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Archaea/genética , Bactérias/genética , Primers do DNA , DNA Arqueal/análise , DNA Bacteriano/análise , Microbiologia Ambiental , Humanos , Saliva/microbiologia
19.
Mol Ecol ; 24(20): 5175-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26363284

RESUMO

As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits.


Assuntos
Florestas , Microbiota/genética , Microbiologia do Solo , Solo/química , Bactérias/classificação , Biodiversidade , Biomassa , China , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Environ Sci Technol ; 49(18): 10969-75, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26301949

RESUMO

The coupled aerobic-anoxic nitrous decomposition operation is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-), (2) NO2(-) reduction to N2O, and (3) N2O conversion to N2 with energy production. Here, we demonstrate that type II methanotrophic enrichments can mediate step two by coupling oxidation of poly(3-hydroxybutyrate) (P3HB) to NO2(-) reduction. Enrichments grown with NH4(+) and NO2(-) were subject to alternating 48-h aerobic and anoxic periods, in which CH4 and NO2(-) were added together in a "coupled" mode of operation or separately in a "decoupled mode". Community structure was stable in both modes and dominated by Methylocystis. In the coupled mode, production of P3HB and N2O was low. In the decoupled mode, significant P3HB was produced, and oxidation of P3HB drove reduction of NO2(-) to N2O with ∼ 70% conversion for >30 cycles (120 d). In batch tests of wasted cells from the decoupled mode, N2O production rates increased at low O2 or high NO2(-) levels. The results are significant for the development of engineered processes that remove nitrogen from wastewater and for understanding of conditions that favor environmental production of N2O.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Aerobiose/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Biomassa , Reatores Biológicos/microbiologia , Nitrogênio/farmacologia , Oxirredução/efeitos dos fármacos , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa