Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Res ; 234: 116531, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394169

RESUMO

Circulatory-system diseases (CSDs) are responsible for 50-60% of all deaths in Romania. Due to its continental climate, with cold winters and very warm summers, there is a strong temperature dependence of the CSD mortality. Additionally, within its capital Bucharest, the urban heat island (UHI) is expected to enhance (reduce) heat (cold)-related mortality. Using distributed lag non-linear models, we establish the relation between temperature and CSD mortality in Bucharest and its surroundings. A striking finding is the strong temperature-related response to high urban temperatures of women in comparison with men from the total CSDs mortality. In the present climate, estimates of the CSDs attributable fraction (AF) of mortality at high temperatures is about 66% higher in Bucharest than in its rural surroundings for men, while it is about 100% times higher for women. Additionally, the AF in urban areas is also significantly higher for elderly people, and for those with hypertensive and cerebrovascular diseases than in the rural surroundings. On the other hand, in rural areas, men but especially women are currently more vulnerable with respect to low temperatures than in the urban environment. In order to project future thermal-related mortality, we have used five bias-corrected climate projections from regional circulation models under two climate-change scenarios, RCP4.5 and RCP8.5. Analysis of the temperature-mortality associations for future climate reveals the strongest signal under the scenario RCP8.5 for women, elderly people as well as for groups with hypertensive and cerebrovascular diseases. The net AF increase is much larger in urban agglomeration for women (8.2 times higher than in rural surroundings) and elderly people (8.5 times higher than in rural surroundings). However, our estimates of thermal attributable mortality are most likely underestimated due to the poor representation of UHI and future demography.


Assuntos
Doenças Cardiovasculares , Hipertensão , Feminino , Humanos , Masculino , Idoso , Temperatura Alta , Cidades , Caracteres Sexuais , Clima , Temperatura , Doenças Cardiovasculares/epidemiologia , Mudança Climática , Mortalidade
2.
Environ Res ; 188: 109848, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846640

RESUMO

BACKGROUND: Summer temperatures are expected to increase and heat waves will occur more frequently, be longer, and be more intense as a result of global warming. A growing body of evidence indicates that increasing temperature and heatwaves are associated with excess mortality and therefore global heating may become a major public health threat. However, the heat-mortality relationship has been shown to be location-specific and differences could largely be explained by the most frequent temperature. So far, in Belgium there is little known regarding the heat-mortality relationship in the different urban areas. OBJECTIVES: The objective of this study is to assess the heat-mortality relationship in the two largest urban areas in Belgium, i.e. Antwerp and Brussels for the warm seasons from 2002 until 2011 taking into account the effect of air pollution. METHODS: The threshold in temperature above which mortality increases was determined using segmented regressions for both urban areas. The relationship between daily temperature and mortality above the threshold was investigated using a generalized estimated equation with Poisson distribution to finally determine the percentage of deaths attributable to the effect of heat. RESULTS: Although only 50 km apart, the heat-mortality curves for the two urban areas are different. More specifically, an increase in mortality occurs above a maximum temperature of 25.2 °C in Antwerp and 22.8 °C in Brussels. We estimated that above these thresholds, there is an increase in mortality of 4.9% per 1 °C in Antwerp and of 3.1% in Brussels. During the study period, 1.5% of the deaths in Antwerp and 3.5% of the deaths in Brussels can be attributed to the effect of heat. The thresholds differed considerably from the most frequent temperature, particularly in Antwerp. Adjustment for air pollution attenuated the effect of temperature on mortality and this attenuation was more pronounced when adjusting for ambient ozone. CONCLUSION: Our results show a significant effect of temperature on mortality above a city-specific threshold, both in Antwerp and in Brussels. These findings are important given the ongoing global warming. Recurrent, intense and longer episodes of high temperature and expected changes in air pollutant levels will have an important impact on health in urban areas.


Assuntos
Poluição do Ar , Ozônio , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Bélgica/epidemiologia , Cidades , Temperatura Alta , Mortalidade , Ozônio/análise , Estações do Ano
3.
Artigo em Inglês | MEDLINE | ID: mdl-35409447

RESUMO

In light of climate change, health risks are expected to be exacerbated by more frequent high temperatures and reduced by less frequent cold extremes. To assess the impact of different climate change scenarios, it is necessary to describe the current effects of temperature on health. A time-stratified case-crossover design fitted with conditional quasi-Poisson regressions and distributed lag non-linear models was applied to estimate specific temperature-mortality associations in nine urban agglomerations in Belgium, and a random-effect meta-analysis was conducted to pool the estimates. Based on 307,859 all-cause natural deaths, the mortality risk associated to low temperature was 1.32 (95% CI: 1.21-1.44) and 1.21 (95% CI: 1.08-1.36) for high temperature relative to the minimum mortality temperature (23.1 °C). Both cold and heat were associated with an increased risk of cardiovascular and respiratory mortality. We observed differences in risk by age category, and women were more vulnerable to heat than men. People living in the most built-up municipalities were at higher risk for heat. Air pollutants did not have a confounding effect. Evidence from this study helps to identify specific populations at risk and is important for current and future public health interventions and prevention strategies.


Assuntos
Poluentes Atmosféricos , Temperatura Alta , Poluentes Atmosféricos/análise , Bélgica/epidemiologia , Cidades/epidemiologia , Temperatura Baixa , Feminino , Humanos , Masculino , Mortalidade , Temperatura
4.
Sci Total Environ ; 851(Pt 2): 158336, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037893

RESUMO

BACKGROUND: There is strong evidence of mortality being associated to extreme temperatures but the extent to which individual or residential factors modulate this temperature vulnerability is less clear. METHODS: We conducted a multi-city study with a time-stratified case-crossover design and used conditional logistic regression to examine the association between extreme temperatures and overall natural and cause-specific mortality. City-specific estimates were pooled using a random-effect meta-analysis to describe the global association. Cold and heat effects were assessed by comparing the mortality risks corresponding to the 2.5th and 97.5th percentiles of the daily temperature, respectively, with the minimum mortality temperature. For cold, we cumulated the risk over lags of 0 to 28 days before death and 0 to 7 days for heat. We carried out stratified analyses and assessed effect modification by individual characteristics, preexisting chronic health conditions and residential environment (population density, built-up area and air pollutants: PM2.5, NO2, O3 and black carbon) to identify more vulnerable population subgroups. RESULTS: Based on 307,859 deaths from natural causes, we found significant cold effect (OR = 1.42, 95%CI: 1.30-1.57) and heat effect (OR = 1.17, 95%CI: 1.12-1.21) for overall natural mortality and for respiratory causes in particular. There were significant effects modifications for some health conditions: people with asthma were at higher risk for cold, and people with psychoses for heat. In addition, people with long or frequent hospital admissions in the year preceding death were at lower risk. Despite large uncertainties, there was suggestion of effect modification by air pollutants: the effect of heat was higher on more polluted days of O3 and black carbon, and a higher cold effect was observed on more polluted days of PM2.5 and NO2 while for O3, the effect was lower. CONCLUSIONS: These findings allow for targeted planning of public-health measures aiming to prevent the effects of extreme temperatures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Bélgica/epidemiologia , Carbono , Temperatura Alta , Mortalidade , Dióxido de Nitrogênio/análise , Material Particulado/análise , Temperatura , Fatores de Tempo , Estudos Cross-Over
5.
Sci Total Environ ; 806(Pt 2): 150422, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852431

RESUMO

This study aimed to simulate oak and beech forest growth under various scenarios of climate change and to evaluate how the forest response depends on site properties and particularly on stand characteristics using the individual process-based model HETEROFOR. First, this model was evaluated on a wide range of site conditions. We used data from 36 long-term forest monitoring plots to initialize, calibrate, and evaluate HETEROFOR. This evaluation showed that HETEROFOR predicts individual tree radial growth and height increment reasonably well under different growing conditions when evaluated on independent sites. In our simulations under constant CO2 concentration ([CO2]cst) for the 2071-2100 period, climate change induced a moderate net primary production (NPP) gain in continental and mountainous zones and no change in the oceanic zone. The NPP changes were negatively affected by air temperature during the vegetation period and by the annual rainfall decrease. To a lower extent, they were influenced by soil extractable water reserve and stand characteristics. These NPP changes were positively affected by longer vegetation periods and negatively by drought for beech and larger autotrophic respiration costs for oak. For both species, the NPP gain was much larger with rising CO2 concentration ([CO2]var) mainly due to the CO2 fertilisation effect. Even if the species composition and structure had a limited influence on the forest response to climate change, they explained a large part of the NPP variability (44% and 34% for [CO2]cst and [CO2]var, respectively) compared to the climate change scenario (5% and 29%) and the inter-annual climate variability (20% and 16%). This gives the forester the possibility to act on the productivity of broadleaved forests and prepare them for possible adverse effects of climate change by reinforcing their resilience.


Assuntos
Fagus , Quercus , Mudança Climática , Florestas , Árvores
6.
Artigo em Inglês | MEDLINE | ID: mdl-34682444

RESUMO

Climate change leads to more days with extremely hot temperatures. Previous analyses of heat waves have documented a short-term rise in mortality. The results on the relationship between high temperatures and hospitalisations, especially in vulnerable patients admitted to nursing homes, are inconsistent. The objective of this research was to examine the discrepancy between heat-related mortality and morbidity in nursing homes. A time-stratified case-crossover study about the impact of heat waves on mortality and hospitalisations between 1 January 2013 and 31 December 2017 was conducted in 10 nursing homes over 5 years in Flanders, Belgium. In this study, the events were deaths and hospitalisations. We selected our control days during the same month as the events and matched them by day of the week. Heat waves were the exposure. Conditional logistic regression models were applied. The associations were reported as odds ratios at lag 0, 1, 2, and 3 and their 95% confidence intervals. In the investigated time period, 3048 hospitalisations took place and 1888 residents died. The conditional logistic regression showed that odds ratios of mortality and hospitalisations during heat waves were 1.61 (95% confidence interval 1.10-2.37) and 0.96 (95% confidence interval 0.67-1.36), respectively, at lag 0. Therefore, the increase in mortality during heat waves was statistically significant, but no significant changes in hospitalisations were obtained. Our result suggests that heat waves have an adverse effect on mortality in Flemish nursing homes but have no significant effect on the number of hospitalisations.


Assuntos
Temperatura Alta , Casas de Saúde , Estudos Cross-Over , Hospitalização , Humanos , Morbidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-24827301

RESUMO

We present a simple model of network growth and solve it by writing the dynamic equations for its macroscopic characteristics such as the degree distribution and degree correlations. This allows us to study carefully the percolation transition using a generating functions theory. The model considers a network with a fixed number of nodes wherein links are introduced using degree-dependent linking probabilities pk. To illustrate the techniques and support our findings using Monte Carlo simulations, we introduce the exemplary linking rule pk∝k-α, with α between -1 and +∞. This parameter may be used to interpolate between different regimes. For negative α, links are most likely attached to high-degree nodes. On the other hand, in case α>0, nodes with low degrees are connected and the model asymptotically approaches a process undergoing explosive percolation.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 032101, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517544

RESUMO

In a recent Letter, Friedman and Landsberg discussed the underlying mechanism of explosive phase transitions on complex networks [Phys. Rev. Lett. 103, 255701 (2009).]. This Brief Report presents a modest though more insightful extension of their arguments. We discuss the implications of their results on the cluster-size distribution and deduce that, under general conditions, the percolation transition will be explosive if the mean number of nodes per cluster diverges in the thermodynamic limit and prior to the transition threshold. In other words, if upon increase of the network size n the amount of clusters in the network does not grow proportionally to n, the percolation transition is explosive. Simulations and analytical calculations on various models support our findings.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 011102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20365318

RESUMO

Biased (degree-dependent) percolation was recently shown to provide strategies for turning robust networks fragile and vice versa. Here, we present more detailed results for biased edge percolation on scale-free networks. We assume a network in which the probability for an edge between nodes i and j to be retained is proportional to (k(i)k(j)(-alpha) with k(i) and k(j) the degrees of the nodes. We discuss two methods of network reconstruction, sequential and simultaneous, and investigate their properties by analytical and numerical means. The system is examined away from the percolation transition, where the size of the giant cluster is obtained, and close to the transition, where nonuniversal critical exponents are extracted using the generating-functions method. The theory is found to agree quite well with simulations. By presenting an extension of the Fortuin-Kasteleyn construction, we find that biased percolation is well-described by the q-->1 limit of the q -state Potts model with inhomogeneous couplings.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa