RESUMO
BACKGROUND: Randomized, controlled trials have shown both benefit and harm from tight blood-glucose control in patients in the intensive care unit (ICU). Variation in the use of early parenteral nutrition and in insulin-induced severe hypoglycemia might explain this inconsistency. METHODS: We randomly assigned patients, on ICU admission, to liberal glucose control (insulin initiated only when the blood-glucose level was >215 mg per deciliter [>11.9 mmol per liter]) or to tight glucose control (blood-glucose level targeted with the use of the LOGIC-Insulin algorithm at 80 to 110 mg per deciliter [4.4 to 6.1 mmol per liter]); parenteral nutrition was withheld in both groups for 1 week. Protocol adherence was determined according to glucose metrics. The primary outcome was the length of time that ICU care was needed, calculated on the basis of time to discharge alive from the ICU, with death accounted for as a competing risk; 90-day mortality was the safety outcome. RESULTS: Of 9230 patients who underwent randomization, 4622 were assigned to liberal glucose control and 4608 to tight glucose control. The median morning blood-glucose level was 140 mg per deciliter (interquartile range, 122 to 161) with liberal glucose control and 107 mg per deciliter (interquartile range, 98 to 117) with tight glucose control. Severe hypoglycemia occurred in 31 patients (0.7%) in the liberal-control group and 47 patients (1.0%) in the tight-control group. The length of time that ICU care was needed was similar in the two groups (hazard ratio for earlier discharge alive with tight glucose control, 1.00; 95% confidence interval, 0.96 to 1.04; P = 0.94). Mortality at 90 days was also similar (10.1% with liberal glucose control and 10.5% with tight glucose control, P = 0.51). Analyses of eight prespecified secondary outcomes suggested that the incidence of new infections, the duration of respiratory and hemodynamic support, the time to discharge alive from the hospital, and mortality in the ICU and hospital were similar in the two groups, whereas severe acute kidney injury and cholestatic liver dysfunction appeared less prevalent with tight glucose control. CONCLUSIONS: In critically ill patients who were not receiving early parenteral nutrition, tight glucose control did not affect the length of time that ICU care was needed or mortality. (Funded by the Research Foundation-Flanders and others; TGC-Fast ClinicalTrials.gov number, NCT03665207.).
Assuntos
Glicemia , Estado Terminal , Controle Glicêmico , Insulina , Humanos , Glicemia/análise , Glucose/análise , Hipoglicemia/induzido quimicamente , Insulina/administração & dosagem , Insulina/efeitos adversos , Insulina/uso terapêutico , Unidades de Terapia Intensiva , Controle Glicêmico/efeitos adversos , Controle Glicêmico/métodos , Nutrição Parenteral , Algoritmos , Estado Terminal/terapiaRESUMO
This article tells the story of our long search for the answer to one question: Is stress hyperglycemia in critically ill patients adaptive or maladaptive? Our earlier work had suggested the lack of hepatic insulin effect and hyperglycemia as jointly predicting poor outcome. Therefore, we hypothesized that insulin infusion to reach normoglycemia, tight glucose control, improves outcome. In three randomized controlled trials (RCTs), we found morbidity and mortality benefit with tight glucose control. Moving from the bed to the bench, we attributed benefits to the prevention of glucose toxicity in cells taking up glucose in an insulin-independent, glucose concentration gradient-dependent manner, counteracted rather than synergized by insulin. Several subsequent RCTs did not confirm benefit, and the large Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation, or "NICE-SUGAR," trial found increased mortality with tight glucose control associated with severe hypoglycemia. Our subsequent clinical and mechanistic research revealed that early use of parenteral nutrition, the context of our initial RCTs, had been a confounder. Early parenteral nutrition (early-PN) aggravated hyperglycemia, suppressed vital cell damage removal, and hampered recovery. Therefore, in our next and largest "TGC-fast" RCT, we retested our hypothesis, without the use of early-PN and with a computer algorithm for tight glucose control that avoided severe hypoglycemia. In this trial, tight glucose control prevented kidney and liver damage, though with much smaller effect sizes than in our initial RCTs without affecting mortality. Our quest ends with the strong recommendation to omit early-PN for patients in the ICU, as this reduces need of blood glucose control and allows cellular housekeeping systems to play evolutionary selected roles in the recovery process. Once again, less is more in critical care.
Assuntos
Hiperglicemia , Hipoglicemia , Humanos , Controle Glicêmico , Glicemia , Insulina/uso terapêutico , Glucose , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Unidades de Terapia IntensivaRESUMO
BACKGROUND: Hypocholesterolemia hallmarks critical illness though the underlying pathophysiology is incompletely understood. As low circulating cholesterol levels could partly be due to an increased conversion to cortisol/corticosterone, we hypothesized that glucocorticoid treatment, via reduced de novo adrenal cortisol/corticosterone synthesis, might improve cholesterol availability and as such affect adrenal gland and skeletal muscle function. METHODS: In a matched set of prolonged critically ill patients (n = 324) included in the EPaNIC RCT, a secondary analysis was performed to assess the association between glucocorticoid treatment and plasma cholesterol from ICU admission to day five. Next, in a mouse model of cecal ligation and puncture-induced sepsis, septic mice were randomized to receive either hydrocortisone (1.2 mg/day) (n = 17) or placebo (n = 15) for 5 days, as compared with healthy mice (n = 18). Plasma corticosterone, cholesterol, and adrenocortical and myofiber cholesterol were quantified. Adrenal structure and steroidogenic capacity were evaluated. Muscle force and markers of atrophy, fibrosis and regeneration were quantified. In a consecutive mouse study with identical design (n = 24), whole body composition was assessed by EchoMRI to investigate impact on lean mass, fat mass, total and free water. RESULTS: In human patients, glucocorticoid treatment was associated with higher plasma HDL- and LDL-cholesterol from respectively ICU day two and day three, up to day five (P < 0.05). Plasma corticosterone was no longer elevated in hydrocortisone-treated septic mice compared to placebo, whereas the sepsis-induced reduction in plasma HDL- and LDL-cholesterol and in adrenocortical cholesterol was attenuated (P < 0.05), but without improving the adrenocortical ACTH-induced CORT response and with increased adrenocortical inflammation and apoptosis (P < 0.05). Total body mass was further decreased in hydrocortisone-treated septic mice (P < 0.01) compared to placebo, with no additional effect on muscle mass, force or myofiber size. The sepsis-induced rise in markers of muscle atrophy and fibrosis was unaffected by hydrocortisone treatment, whereas markers of muscle regeneration were suppressed compared to placebo (P < 0.05). An increased loss of lean body mass and total and free water was observed in hydrocortisone-treated septic mice compared to placebo (P < 0.05). CONCLUSIONS: Glucocorticoid treatment partially attenuated critical illness-induced hypocholesterolemia, but at a cost of impaired adrenal function, suppressed muscle regeneration and exacerbated loss of body mass.
Assuntos
Glândulas Suprarrenais , Colesterol , Estado Terminal , Glucocorticoides , Músculo Esquelético , Animais , Estado Terminal/terapia , Humanos , Camundongos , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Colesterol/sangue , Colesterol/análise , Masculino , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/fisiopatologia , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Feminino , Idoso , Hidrocortisona/análise , Hidrocortisona/uso terapêutico , Hidrocortisona/sangue , Sepse/tratamento farmacológico , Sepse/fisiopatologia , Sepse/complicações , Modelos Animais de DoençasRESUMO
BACKGROUND: To determine whether intermittent intravenous (IV) paracetamol as primary analgesic would significantly reduce morphine consumption in children aged 0-3 years after cardiac surgery with cardiopulmonary bypass. METHODS: Multi-center, randomized, double-blinded, controlled trial in four level-3 Pediatric Intensive Care Units (PICU) in the Netherlands and Belgium. Inclusion period; March 2016-July 2020. Children aged 0-3 years, undergoing cardiac surgery with cardiopulmonary bypass were eligible. Patients were randomized to continuous morphine or intermittent IV paracetamol as primary analgesic after a loading dose of 100 mcg/kg morphine was administered at the end of surgery. Rescue morphine was given if numeric rating scale (NRS) pain scores exceeded predetermined cutoff values. Primary outcome was median weight-adjusted cumulative morphine dose in mcg/kg in the first 48 h postoperative. For the comparison of the primary outcome between groups, the nonparametric Van Elteren test with stratification by center was used. For comparison of the proportion of patients with one or more NRS pain scores of 4 and higher between the two groups, a non-inferiority analysis was performed using a non-inferiority margin of 20%. RESULTS: In total, 828 were screened and finally 208 patients were included; parents of 315 patients did not give consent and 305 were excluded for various reasons. Fourteen of the enrolled 208 children were withdrawn from the study before start of study medication leaving 194 patients for final analysis. One hundred and two patients received intermittent IV paracetamol, 106 received continuous morphine. The median weight-adjusted cumulative morphine consumption in the first 48 h postoperative in the IV paracetamol group was 5 times lower (79%) than that in the morphine group (median, 145.0 (IQR, 115.0-432.5) mcg/kg vs 692.6 (IQR, 532.7-856.1) mcg/kg; P < 0.001). The rescue morphine consumption was similar between the groups (p = 0.38). Non-inferiority of IV paracetamol administration in terms of NRS pain scores was proven; difference in proportion - 3.1% (95% CI - 16.6-10.3%). CONCLUSIONS: In children aged 0-3 years undergoing cardiac surgery, use of intermittent IV paracetamol reduces the median weight-adjusted cumulative morphine consumption in the first 48 h after surgery by 79% with equal pain relief showing equipoise for IV paracetamol as primary analgesic. Trial Registration Clinicaltrials.gov, Identifier: NCT05853263; EudraCT Number: 2015-001835-20.
Assuntos
Acetaminofen , Morfina , Humanos , Morfina/uso terapêutico , Morfina/administração & dosagem , Acetaminofen/uso terapêutico , Acetaminofen/administração & dosagem , Masculino , Feminino , Lactente , Método Duplo-Cego , Dor Pós-Operatória/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Bélgica , Países Baixos , Recém-Nascido , Administração Intravenosa , Procedimentos Cirúrgicos Cardíacos/métodos , Pré-Escolar , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/uso terapêutico , Unidades de Terapia Intensiva Pediátrica/organização & administração , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Medição da Dor/métodosRESUMO
PURPOSE OF REVIEW: Many critically ill patients face physical, mental or neurocognitive impairments up to years later, the etiology remaining largely unexplained. Aberrant epigenetic changes have been linked to abnormal development and diseases resulting from adverse environmental exposures like major stress or inadequate nutrition. Theoretically, severe stress and artificial nutritional management of critical illness thus could induce epigenetic changes explaining long-term problems. We review supporting evidence. RECENT FINDINGS: Epigenetic abnormalities are found in various critical illness types, affecting DNA-methylation, histone-modification and noncoding RNAs. They at least partly arise de novo after ICU-admission. Many affect genes with functions relevant for and several associate with long-term impairments. As such, de novo DNA-methylation changes in critically ill children statistically explained part of their disturbed long-term physical/neurocognitive development. These methylation changes were in part evoked by early-parenteral-nutrition (early-PN) and statistically explained harm by early-PN on long-term neurocognitive development. Finally, long-term epigenetic abnormalities beyond hospital-discharge have been identified, affecting pathways highly relevant for long-term outcomes. SUMMARY: Epigenetic abnormalities induced by critical illness or its nutritional management provide a plausible molecular basis for their adverse effects on long-term outcomes. Identifying treatments to further attenuate these abnormalities opens perspectives to reduce the debilitating legacy of critical illness.
Assuntos
Estado Terminal , Nutrição Parenteral , Criança , Humanos , Estado Terminal/terapia , Nutrição Parenteral/métodos , Epigênese Genética , Unidades de Terapia Intensiva , DNARESUMO
Although numerous observational studies associated underfeeding with poor outcome, recent randomized controlled trials (RCTs) have shown that early full nutritional support does not benefit critically ill patients and may induce dose-dependent harm. Some researchers have suggested that the absence of benefit in RCTs may be attributed to overrepresentation of patients deemed at low nutritional risk, or to a too low amino acid versus non-protein energy dose in the nutritional formula. However, these hypotheses have not been confirmed by strong evidence. RCTs have not revealed any subgroup benefiting from early full nutritional support, nor benefit from increased amino acid doses or from indirect calorimetry-based energy dosing targeted at 100% of energy expenditure. Mechanistic studies attributed the absence of benefit of early feeding to anabolic resistance and futile catabolism of extra provided amino acids, and to feeding-induced suppression of recovery-enhancing pathways such as autophagy and ketogenesis, which opened perspectives for fasting-mimicking diets and ketone supplementation. Yet, the presence or absence of an anabolic response to feeding cannot be predicted or monitored and likely differs over time and among patients. In the absence of such monitor, the value of indirect calorimetry seems obscure, especially in the acute phase of illness. Until now, large feeding RCTs have focused on interventions that were initiated in the first week of critical illness. There are no large RCTs that investigated the impact of different feeding strategies initiated after the acute phase and continued after discharge from the intensive care unit in patients recovering from critical illness.
Assuntos
Estado Terminal , Nutrição Enteral , Humanos , Estado Terminal/terapia , Apoio Nutricional , Estado Nutricional , Unidades de Terapia IntensivaRESUMO
BACKGROUND: In critically ill patients, measured creatinine clearance (CrCl) is the most reliable method to evaluate glomerular filtration rate in routine clinical practice and may vary subsequently on a day-to-day basis. We developed and externally validated models to predict CrCl one day ahead and compared them with a reference reflecting current clinical practice. METHODS: A gradient boosting method (GBM) machine-learning algorithm was used to develop the models on data from 2825 patients from the EPaNIC multicenter randomized controlled trial database. We externally validated the models on 9576 patients from the University Hospitals Leuven, included in the M@tric database. Three models were developed: a "Core" model based on demographic, admission diagnosis, and daily laboratory results; a "Core + BGA" model adding blood gas analysis results; and a "Core + BGA + Monitoring" model also including high-resolution monitoring data. Model performance was evaluated against the actual CrCl by mean absolute error (MAE) and root-mean-square error (RMSE). RESULTS: All three developed models showed smaller prediction errors than the reference. Assuming the same CrCl of the day of prediction showed 20.6 (95% CI 20.3-20.9) ml/min MAE and 40.1 (95% CI 37.9-42.3) ml/min RMSE in the external validation cohort, while the developed model having the smallest RMSE (the Core + BGA + Monitoring model) had 18.1 (95% CI 17.9-18.3) ml/min MAE and 28.9 (95% CI 28-29.7) ml/min RMSE. CONCLUSIONS: Prediction models based on routinely collected clinical data in the ICU were able to accurately predict next-day CrCl. These models could be useful for hydrophilic drug dosage adjustment or stratification of patients at risk. TRIAL REGISTRATION: Not applicable.
Assuntos
Algoritmos , Estado Terminal , Humanos , Adulto , Creatinina , Taxa de Filtração GlomerularRESUMO
Personalization of ICU nutrition is essential to future of critical care. Recommendations from American/European guidelines and practice suggestions incorporating recent literature are presented. Low-dose enteral nutrition (EN) or parenteral nutrition (PN) can be started within 48 h of admission. While EN is preferred route of delivery, new data highlight PN can be given safely without increased risk; thus, when early EN is not feasible, provision of isocaloric PN is effective and results in similar outcomes. Indirect calorimetry (IC) measurement of energy expenditure (EE) is recommended by both European/American guidelines after stabilization post-ICU admission. Below-measured EE (~ 70%) targets should be used during early phase and increased to match EE later in stay. Low-dose protein delivery can be used early (~ D1-2) (< 0.8 g/kg/d) and progressed to ≥ 1.2 g/kg/d as patients stabilize, with consideration of avoiding higher protein in unstable patients and in acute kidney injury not on CRRT. Intermittent-feeding schedules hold promise for further research. Clinicians must be aware of delivered energy/protein and what percentage of targets delivered nutrition represents. Computerized nutrition monitoring systems/platforms have become widely available. In patients at risk of micronutrient/vitamin losses (i.e., CRRT), evaluation of micronutrient levels should be considered post-ICU days 5-7 with repletion of deficiencies where indicated. In future, we hope use of muscle monitors such as ultrasound, CT scan, and/or BIA will be utilized to assess nutrition risk and monitor response to nutrition. Use of specialized anabolic nutrients such as HMB, creatine, and leucine to improve strength/muscle mass is promising in other populations and deserves future study. In post-ICU setting, continued use of IC measurement and other muscle measures should be considered to guide nutrition. Research on using rehabilitation interventions such as cardiopulmonary exercise testing (CPET) to guide post-ICU exercise/rehabilitation prescription and using anabolic agents such as testosterone/oxandrolone to promote post-ICU recovery is needed.
Assuntos
Unidades de Terapia Intensiva , Apoio Nutricional , Humanos , Cuidados Críticos/métodos , Estado Nutricional , Nutrição Enteral/métodos , Estado Terminal/terapiaRESUMO
BACKGROUND: Withholding parenteral nutrition (PN) until one week after PICU admission facilitated recovery from critical illness and protected against emotional and behavioral problems 4 years later. However, the intervention increased the risk of hypoglycemia, which may have counteracted part of the benefit. Previously, hypoglycemia occurring under tight glucose control in critically ill children receiving early PN did not associate with long-term harm. We investigated whether hypoglycemia in PICU differentially associates with outcome in the context of withholding early PN, and whether any potential association with outcome may depend on the applied glucose control protocol. METHODS: In this secondary analysis of the multicenter PEPaNIC RCT, we studied whether hypoglycemia in PICU associated with mortality (N = 1440) and 4-years neurodevelopmental outcome (N = 674) through univariable comparison and multivariable regression analyses adjusting for potential confounders. In patients with available blood samples (N = 556), multivariable models were additionally adjusted for baseline serum NSE and S100B concentrations as biomarkers of neuronal, respectively, astrocytic damage. To study whether an association of hypoglycemia with outcome may be affected by the nutritional strategy or center-specific glucose control protocol, we further adjusted the models for the interaction between hypoglycemia and the randomized nutritional strategy, respectively, treatment center. In sensitivity analyses, we studied whether any association with outcome was different in patients with iatrogenic or spontaneous/recurrent hypoglycemia. RESULTS: Hypoglycemia univariably associated with higher mortality in PICU, at 90 days and 4 years after randomization, but not when adjusted for risk factors. After 4 years, critically ill children with hypoglycemia scored significantly worse for certain parent/caregiver-reported executive functions (working memory, planning and organization, metacognition) than patients without hypoglycemia, also when adjusted for risk factors including baseline NSE and S100B. Further adjustment for the interaction of hypoglycemia with the randomized intervention or treatment center revealed a potential interaction, whereby tight glucose control and withholding early PN may be protective. Impaired executive functions were most pronounced in patients with spontaneous or recurrent hypoglycemia. CONCLUSION: Critically ill children exposed to hypoglycemia in PICU were at higher risk of impaired executive functions after 4 years, especially in cases of spontaneous/recurrent hypoglycemia.
Assuntos
Glicemia , Hipoglicemia , Criança , Humanos , Glicemia/análise , Controle Glicêmico , Estado Terminal/terapia , Unidades de Terapia Intensiva PediátricaRESUMO
OBJECTIVES: Predicting the patients' tolerance to enteral nutrition (EN) would help clinicians optimize individual nutritional intake. This study investigated the course of several gastrointestinal (GI) biomarkers and their association with EN advancement (ENA) longitudinally during pediatric intensive care unit (PICU) admission. METHODS: This is a secondary analysis of the Early versus Late Parenteral Nutrition in the Pediatric Intensive Care Unit randomized controlled trial. EN was started early and increased gradually. The cholecystokinin (CCK), leptin, glucagon, intestinal fatty acid-binding protein 2 (I-FABP2), and citrulline plasma concentrations were measured upon PICU admission, day 3 and day 5. ENA was defined as kcal EN provided as % of predicted resting energy expenditure. The course of the biomarkers and ENA was examined in patients with samples on all time points using Friedman and Wilcoxon signed-rank tests. The association of ENA with the biomarkers was examined using a 2-part mixed-effects model with data of the complete population, adjusted for possible confounders. RESULTS: For 172 patients, median age 8.6 years (first quartile; third quartile: 4.2; 13.4), samples were available, of which 55 had samples on all time points. The median ENA was 0 (0; 0) on admission, 14.5 (0.0; 43.8) on day 3, and 28.0 (7.6; 94.8) on day 5. During PICU stay, CCK and I-FABP2 concentrations decreased significantly, whereas glucagon concentrations increased significantly, and leptin and citrulline remained stable. None of the biomarkers was longitudinally associated with ENA. CONCLUSIONS: Based on the current evidence, CCK, leptin, glucagon, I-FABP2, and citrulline appear to have no added value in predicting ENA in the first 5 days of pediatric critical illness.
Assuntos
Estado Terminal , Leptina , Criança , Humanos , Estado Terminal/terapia , Citrulina , Glucagon , Unidades de Terapia Intensiva Pediátrica , BiomarcadoresRESUMO
PURPOSE: Acute kidney injury (AKI) recovery prediction remains challenging. The purpose of the present study is to develop and validate prediction models for AKI recovery at hospital discharge in critically ill patients with ICU-acquired AKI stage 3 (AKI-3). METHODS: Models were developed and validated in a development cohort (n = 229) and a matched validation cohort (n = 244) from the multicenter EPaNIC database to create prediction models with the least absolute shrinkage and selection operator (Lasso) machine-learning algorithm. We evaluated the discrimination and calibration of the models and compared their performance with plasma neutrophil gelatinase-associated lipocalin (NGAL) measured on first AKI-3 day (NGAL_AKI3) and reference model that only based on age. RESULTS: Complete recovery and complete or partial recovery occurred in 33.20% and 51.23% of the validation cohort patients respectively. The prediction model for complete recovery based on age, need for renal replacement therapy (RRT), diagnostic group (cardiac/surgical/trauma/others), and sepsis on admission had an area under the receiver operating characteristics curve (AUROC) of 0.53. The prediction model for complete or partial recovery based on age, need for RRT, platelet count, urea, and white blood cell count had an AUROC of 0.61. NGAL_AKI3 showed AUROCs of 0.55 and 0.53 respectively. In cardiac patients, the models had higher AUROCs of 0.60 and 0.71 than NGAL_AKI3's AUROCs of 0.52 and 0.54. The developed models demonstrated a better performance over the reference models (only based on age) for cardiac surgery patients, but not for patients with sepsis and for a general ICU population. CONCLUSION: Models to predict AKI recovery upon hospital discharge in critically ill patients with AKI-3 showed poor performance in the general ICU population, similar to the biomarker NGAL. In cardiac surgery patients, discrimination was acceptable, and better than NGAL. These findings demonstrate the difficulty of predicting non-reversible AKI early.
Assuntos
Injúria Renal Aguda , Sepse , Humanos , Adulto , Lipocalina-2 , Estado Terminal/terapia , Alta do Paciente , Modelos Estatísticos , Prognóstico , Estudos Prospectivos , Injúria Renal Aguda/diagnóstico , Biomarcadores , HospitaisRESUMO
Sepsis is defined as any life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains an important cause of critical illness and has considerable short- and long-term morbidity and mortality. In the last decades, preclinical and clinical research has revealed a biphasic pattern in the (neuro-)endocrine responses to sepsis as to other forms of critical illness, contributing to development of severe metabolic alterations. Immediately after the critical illness-inducing insult, fasting- and stress-induced neuroendocrine and cellular responses evoke a catabolic state in order to provide energy substrates for vital tissues, and to concomitantly activate cellular repair pathways while energy-consuming anabolism is postponed. Large randomized controlled trials have shown that providing early full feeding in this acute phase induced harm and reversed some of the neuro-endocrine alterations, which suggested that the acute fasting- and stress-induced responses to critical illness are likely interlinked and benefical. However, it remains unclear whether, in the context of accepting virtual fasting in the acute phase of illness, metabolic alterations such as hyperglycemia are harmful or beneficial. When patients enter a prolonged phase of critical illness, a central suppression of most neuroendocrine axes follows. Prolonged fasting and central neuroendocrine suppression may no longer be beneficial. Although pilot studies have suggested benefit of fasting-mimicking diets and interventions that reactivate the central neuroendocrine suppression selectively in the prolonged phase of illness, further study is needed to investigate patient-oriented outcomes in larger randomized trials.
Assuntos
Hiperglicemia , Sepse , Estado Terminal , Humanos , Redes e Vias Metabólicas , Sistemas NeurossecretoresRESUMO
BACKGROUND: Many critically ill children face long-term developmental impairments. The PEPaNIC trial attributed part of the problems at the level of neurocognitive and emotional/behavioral development to early use of parenteral nutrition (early-PN) in the PICU, as compared with withholding it for 1 week (late-PN). Insight in long-term daily life physical functional capacity after critical illness is limited. Also, whether timing of initiating PN affects long-term physical function of these children remained unknown. METHODS: This preplanned follow-up study of the multicenter PEPaNIC randomized controlled trial subjected 521 former critically ill children (253 early-PN, 268 late-PN) to quantitative physical function tests 4 years after PICU admission in Leuven or Rotterdam, in comparison with 346 age- and sex-matched healthy children. Tests included handgrip strength measurement, timed up-and-go test, 6-min walk test, and evaluation of everyday overall physical activity with an accelerometer. We compared these functional measures for the former critically ill and healthy children and for former critically ill children randomized to late-PN versus early-PN, with multivariable linear or logistic regression analyses adjusting for risk factors. RESULTS: As compared with healthy children, former critically ill children showed less handgrip strength (p < 0.0001), completed the timed up-and-go test more slowly (p < 0.0001), walked a shorter distance in 6 min (p < 0.0001) during which they experienced a larger drop in peripheral oxygen saturation (p ≤ 0.026), showed a lower energy expenditure (p ≤ 0.024), performed more light and less moderate physical activity (p ≤ 0.047), and walked fewer steps per day (p = 0.0074). Late-PN as compared with early-PN did not significantly affect these outcomes. CONCLUSIONS: Four years after PICU admission, former critically ill children showed worse physical performance as compared with healthy children, without impact of timing of supplemental PN in the PICU. This study provides further support for de-implementing the early use of PN in the PICU. Trial registration ClinicalTrials.gov, NCT01536275 ; registered on February 22, 2012.
Assuntos
Estado Terminal , Força da Mão , Criança , Estado Terminal/terapia , Seguimentos , Humanos , Unidades de Terapia Intensiva Pediátrica , Nutrição Parenteral/efeitos adversos , Desempenho Físico Funcional , Fatores de TempoRESUMO
OBJECTIVES: PICU patients face long-term developmental impairments, partially attributable to early parenteral nutrition (PN) versus late-PN. We investigated how this legacy and harm by early-PN evolve over time. DESIGN: Preplanned secondary analysis of the multicenter PEPaNIC-RCT (ClinicalTrials.gov, NCT01536275) that enrolled 1,440 critically ill children from 2012 to 2015 and its 2- (2014-2018) and 4-year (2016-2019) cross-sectional follow-up studies. SETTING: PICUs of Leuven (Belgium), Rotterdam (The Netherlands), and Edmonton (Canada). PATIENTS: Patients and demographically matched healthy control children that underwent longitudinal assessment for physical/emotional/behavioral/neurocognitive functions at both follow-up time points. INTERVENTIONS: In the PEPaNIC-RCT, patients were randomly allocated to early-PN versus late-PN. MEASUREMENTS AND MAIN RESULTS: This within-individual longitudinal study investigated changes in physical/emotional/behavioral/neurocognitive functions from 2 to 4 years after PICU admission for 614 patients (297 early-PN and 317 late-PN, tested at mean ± sd age 5.4 ± 4.2 and 7.3 ± 4.3 yr) and for 357 demographically matched healthy children tested at age 5.6 ± 4.3 and 7.5 ± 4.3 years. We determined within-group time-courses, interaction between time and group, and independent impact of critical illness and early-PN on these time-courses. Most deficits in patients versus healthy children remained prominent over the 2 years ( p ≤ 0.01). Deficits further aggravated for height, body mass index, the executive function metacognition, intelligence, motor coordination (alternating/synchronous tapping), and memory learning-index, whereas verbal memory deficits became smaller (working/immediate/delayed memory) ( p ≤ 0.05). Adjustment for risk factors confirmed most findings and revealed that patients "grew-into-deficit" for additional executive functions (flexibility/emotional control/total executive functioning) and "grew-out-of-deficit" for additional memory functions (recognition/pictures) ( p ≤ 0.05). Time-courses were largely unaffected by early-PN versus late-PN, except for weight loss and limited catch-up for visual-motor integration and alertness in early-PN patients ( p ≤ 0.05). CONCLUSIONS: From 2- to 4-year post-PICU admission, developmental impairments remained prominent. Within that time-window, impaired growth in height, executive functioning and intelligence aggravated, and impaired memory and harm by early-PN only partially recovered. Impact on development into adulthood requires further investigation.
Assuntos
Unidades de Terapia Intensiva Pediátrica , Nutrição Parenteral , Adulto , Criança , Pré-Escolar , Estado Terminal/terapia , Estudos Transversais , Humanos , Lactente , Estudos Longitudinais , Nutrição Parenteral/efeitos adversos , Fatores de TempoRESUMO
PURPOSE: To assess the association between respiratory muscle weakness (RMW) at intensive care unit (ICU) discharge and 5-year mortality and morbidity, independent from confounders including peripheral muscle strength. METHODS: Secondary analysis of the prospective 5-year follow-up of the EPaNIC cohort (ClinicalTrials.gov: NCT00512122), limited to 366 patients screened for respiratory and peripheral muscle strength in the ICU with maximal inspiratory pressure (MIP) after removal of the artificial airway, and the Medical Research Council sum score. RMW was defined as an absolute value of MIP <30 cmH2O. Associations between RMW at (or closest to) ICU discharge and all-cause 5-year mortality, and key measures of 5-year physical function, comprising respiratory muscle strength (MIP), hand-grip strength (HGF), 6 min walk distance (6MWD) and physical function of the SF-36 quality-of-life questionnaire (PF-SF-36), were assessed with Cox proportional hazards and linear regression models, adjusted for confounders including peripheral muscle strength. RESULTS: RMW was present in 136/366 (37.2%) patients at ICU discharge. RMW was not independently associated with 5-year mortality (HR with 95% CI 1.273 (0.751 to 1.943), p=0.352). Among 156five-year survivors, those with, as compared with those without RMW demonstrated worse physical function (MIP (absolute value, cmH2O): 62(42-77) vs 94(78-109), p<0.001; HGF (%pred): 67(44-87) vs 96(68-110), p<0.001; 6MWD (%pred): 87(74-102) vs 99 (80-111), p=0.009; PF-SF-36 (score): 55 (30-80) vs 80 (55-95), p<0.001). Associations between RMW and morbidity endpoints remained significant after adjustment for confounders (effect size with 95% CI: MIP: -23.858 (-32.097 to -15.027), p=0.001; HGF: -18.591 (-30.941 to -5.744), p=0.001; 6MWD (transformed): -1587.007 (-3073.763 to -179.253), p=0.034; PF-SF-36 (transformed): 1.176 (0.144-2.270), p=0.036). CONCLUSIONS: RMW at ICU discharge is independently associated with 5-year morbidity but not 5-year mortality.
Assuntos
Cuidados Críticos/métodos , Unidades de Terapia Intensiva/estatística & dados numéricos , Força Muscular/fisiologia , Debilidade Muscular/fisiopatologia , Alta do Paciente/tendências , Insuficiência Respiratória/terapia , Músculos Respiratórios/fisiopatologia , Idoso , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Prognóstico , Estudos Prospectivos , Qualidade de Vida , Insuficiência Respiratória/complicações , Insuficiência Respiratória/fisiopatologia , Fatores de Risco , Inquéritos e Questionários , Fatores de TempoRESUMO
OBJECTIVES: During the early postoperative period, children with congenital heart disease can suffer from inadequate cerebral perfusion, with possible long-term neurocognitive consequences. Cerebral tissue oxygen saturation can be monitored noninvasively with near-infrared spectroscopy. In this prospective study, we hypothesized that reduced cerebral tissue oxygen saturation and increased intensity and duration of desaturation (defined as cerebral tissue oxygen saturation < 65%) during the early postoperative period, independently increase the probability of reduced total intelligence quotient, 2 years after admission to a PICU. DESIGN: Single-center, prospective study, performed between 2012 and 2015. SETTING: The PICU of the University Hospitals Leuven, Belgium. PATIENTS: The study included pediatric patients after surgery for congenital heart disease admitted to the PICU. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Postoperative cerebral perfusion was characterized with the mean cerebral tissue oxygen saturation and dose of desaturation of the first 12 and 24 hours of cerebral tissue oxygen saturation monitoring. The independent association of postoperative mean cerebral tissue oxygen saturation and dose of desaturation with total intelligence quotient at 2-year follow-up was evaluated with a Bayesian linear regression model adjusted for known confounders. According to a noninformative prior, reduced mean cerebral tissue oxygen saturation during the first 12 hours of monitoring results in a loss of intelligence quotient points at 2 years, with a 90% probability (posterior ß estimates [80% credible interval], 0.23 [0.04-0.41]). Similarly, increased dose of cerebral tissue oxygen saturation desaturation would result in a loss of intelligence quotient points at 2 years with a 90% probability (posterior ß estimates [80% credible interval], -0.009 [-0.016 to -0.001]). CONCLUSIONS: Increased dose of cerebral tissue oxygen saturation desaturation and reduced mean cerebral tissue oxygen saturation during the early postoperative period independently increase the probability of having a lower total intelligence quotient, 2 years after PICU admission.
Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Circulação Cerebrovascular/fisiologia , Cardiopatias Congênitas/cirurgia , Oxigênio/sangue , Teorema de Bayes , Procedimentos Cirúrgicos Cardíacos/métodos , Feminino , Humanos , Lactente , Inteligência , Unidades de Terapia Intensiva Pediátrica , Modelos Lineares , Masculino , Oximetria/métodos , Período Pós-Operatório , Estudos Prospectivos , Respiração Artificial , Índice de Gravidade de DoençaRESUMO
Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Hepatopatias/metabolismo , Transcriptoma/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação para Baixo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hepatopatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tapsigargina/toxicidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para CimaRESUMO
PURPOSE OF REVIEW: To summarize the clinical evidence for beneficial effects of ketones, ketogenic diets and intermittent fasting in critical illness, and to review potential mechanisms behind such effects. RECENT FINDINGS: Recent evidence demonstrates that activation of a metabolic fasting response may be beneficial to recover from critical insults. Potential protective mechanisms are, among others, activation of ketogenesis and of damage removal by autophagy. Novel feeding strategies, including ketone supplements, ketogenic diets and intermittent fasting regimens, can activate these pathways - at least partially - in critically ill patients. Randomized controlled trials (RCTs) studying these novel feeding strategies as compared with standard care, are scarce and have not shown consistent benefit. Yet, all RCTs were small and underpowered for clinical endpoints. Moreover, in intermittent fasting studies, the duration of the fasting interval may have been too short to develop a sustained metabolic fasting response. SUMMARY: These findings open perspectives for the further development of fasting-mimicking diets. Ultimately, clinical benefit should be confirmed by RCTs that are adequately powered for clinically relevant, patient-centered endpoints.
Assuntos
Dieta Cetogênica , Jejum , Estado Terminal , Humanos , Unidades de Terapia Intensiva , CetonasRESUMO
BACKGROUND: Critical illness is hallmarked by neuroendocrine alterations throughout ICU stay. We investigated whether the neuroendocrine axes recover after ICU discharge and whether any residual abnormalities associate with physical functional impairments assessed 5 years after critical illness. METHODS: In this preplanned secondary analysis of the EPaNIC randomized controlled trial, we compared serum concentrations of hormones and binding proteins of the thyroid axis, the somatotropic axis and the adrenal axis in 436 adult patients who participated in the prospective 5-year clinical follow-up and who provided a blood sample with those in 50 demographically matched controls. We investigated independent associations between any long-term hormonal abnormalities and physical functional impairments (handgrip strength, 6-min walk distance, and physical health-related quality-of-life) with use of multivariable linear regression analyses. RESULTS: At 5-year follow-up, patients and controls had comparable serum concentrations of thyroid-stimulating hormone, thyroxine (T4), triiodothyronine (T3) and thyroxine-binding globulin, whereas patients had higher reverse T3 (rT3, p = 0.0002) and lower T3/rT3 (p = 0.0012) than controls. Patients had comparable concentrations of growth hormone, insulin-like growth factor-I (IGF-I) and IGF-binding protein 1 (IGFBP1), but higher IGFBP3 (p = 0.030) than controls. Total and free cortisol, cortisol-binding globulin and albumin concentrations were comparable for patients and controls. A lower T3/rT3 was independently associated with lower handgrip strength and shorter 6-min walk distance (p ≤ 0.036), and a higher IGFBP3 was independently associated with higher handgrip strength (p = 0.031). CONCLUSIONS: Five years after ICU admission, most hormones and binding proteins of the thyroid, somatotropic and adrenal axes had recovered. The residual long-term abnormality within the thyroid axis was identified as risk factor for long-term physical impairment, whereas that within the somatotropic axis may be a compensatory protective response. Whether targeting of the residual abnormality in the thyroid axis may improve long-term physical outcome of the patients remains to be investigated. Trial registration ClinicalTrials.gov: NCT00512122, registered on July 31, 2007 ( https://www.clinicaltrials.gov/ct2/show/NCT00512122 ).