Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 666-674, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38194667

RESUMO

Understanding and controlling the diffusion of ions and chemicals within the secondary plant cell walls are pivotal in various applications of biomasses. Recent studies have shown that inorganic ion diffusion through secondary cell walls is controlled by a moisture-induced glass transition in amorphous polysaccharides, including amorphous cellulose and hemicelluloses. Understanding the diffusion of ions in these structures has been the subject of numerous recent experiments; however, a deep understanding of the underlying mechanisms of interactions between ion atoms and water/hemicellulose molecules is still lacking. This study uses molecular dynamics simulations to elucidate the diffusion mechanisms of potassium and chloride ions in the cell walls under varying moisture content. The results reveal that a higher moisture content leads to the formation of solvent layers around the ions and reduces the charge interaction between the functional groups of wood polymers and ions. Hence, a higher moisture content results in an improved diffusion rate of ions within the domain. The simulation results also show that higher moisture content lowers the glass transition temperature, promoting diffusion of ions in the system. In contrast, increases in the ion concentration increase the glass transition temperature of the system and degrade the diffusion of ions in the system.


Assuntos
Vitrificação , Madeira , Temperatura de Transição , Madeira/metabolismo , Difusão , Parede Celular/química , Íons , Água/química , Temperatura
2.
ACS Biomater Sci Eng ; 9(1): 246-256, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542483

RESUMO

Biomaterials are an important source of inspiration for the development of strong and tough materials. Many improved and optimized synthetic materials have been recently developed utilizing this bioinspiration concept. Using side-chain-to-side-chain polymerization of cyclic ß-peptide rings, a novel class of nanomaterials was recently introduced with outstanding mechanical properties such as toughness values greater than natural silks. In this work, molecular dynamics is used to understand the mechanics of side-chain-to-side-chain polymerization of cyclic ß-peptide rings. Unbiased steered molecular dynamics simulations are used to show the difference in the strength of polymerized and unpolymerized processing of similar cyclic rings. The simulations are performed both in aqueous and vacuum environments to capture the role of water on the mechanical properties of the cyclic peptides. Our results show that unpolymerized peptides behave like brittle material, whereas polymerized ones can withstand some stress after initial failure with large values of strain-to-failure. Finally, we have shown that the strength of cyclic peptides in water is higher than in a vacuum.


Assuntos
Peptídeos Cíclicos , Polímeros , Polímeros/química , Água/química , Peptídeos/química , Materiais Biocompatíveis
3.
J Biomed Mater Res A ; 111(1): 118-131, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205385

RESUMO

Lyophilization of protein solutions, such as silk fibroin (silk), produces porous scaffolds useful for tissue engineering (TE). The impact of modifying lyophilization primary drying parameters on scaffold properties has not yet been explored previously. In this work, changes to primary drying duration and temperature were investigated using 3%, 6%, 9%, and 12% (w/v) silk solutions, via protocols labeled as Long Hold, Slow Ramp, and Standard. The 9% and 12% scaffolds were not successfully fabricated using the Standard protocol, while the Long Hold and Slow Ramp protocols resulted in scaffolds from all silk solution concentrations. Scaffolds fabricated using the Long Hold protocol had higher Young's moduli, smaller pore Feret diameters, and faster degradation. To investigate the utility of the different lyophilized scaffolds for in vitro cell culturing, the HepaRG liver cell line was cultured in the 3% to 12% scaffolds fabricated using the Long Hold protocol. The HepaRG cells grown in 3% scaffolds initially had greater lipid accumulation and metabolic activity than the other groups, although these differences were no longer apparent by Day 28. The deoxyribonucleic acid content of the HepaRG cells grown in 3% scaffold group was also initially significantly higher than the other groups. Significant differences in gene expression by 9% scaffolded HepaRG cells (CK19, HNFα) were seen on Day 14 while significant differences by 12% scaffolded HepaRG cells (ALB, APOA4) were seen on Day 28. Overall, modifying the primary drying parameters and silk concentration resulted in lyophilized scaffolds with tunable properties useful for TE applications.


Assuntos
Fibroínas , Seda , Porosidade , Alicerces Teciduais , Temperatura , Engenharia Tecidual , Liofilização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa