Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Int J Biometeorol ; 68(6): 1081-1092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430247

RESUMO

As populations and temperatures of urban areas swell, more people face extreme heat and are at increasing risk of adverse health outcomes. Radiation accounts for much of human heat exposure but is rarely used as heat metric due to a lack of cost-effective and accurate sensors. To this end, we fuse the concepts of a three-globe radiometer-anemometer with a cylindrical human body shape representation, which is more realistic than a spherical representation. Using cost-effective and readily available materials, we fabricated two combinations of three cylinders with varying surface properties. These simple devices measure the convection coefficient and the shortwave and longwave radiative fluxes. We tested the devices in a wind tunnel and at fourteen outdoor sites during July 2023's record-setting heat wave in Tempe, Arizona. The average difference between pedestrian-level mean radiant temperature (MRT) measured using research-grade 3-way net radiometers and the three-cylinder setup was 0.4 ± 3.0 °C ( ±  1 SD). At most, we observed a 10 °C MRT difference on a white roof site with extreme MRT values (70 °C to 80 °C), which will be addressed through discussed design changes to the system. The measured heat transfer coefficient can be used to calculate wind speed below 2 m·s-1; thus, the three cylinders combined also serve as a low-speed anemometer. The novel setup could be used in affordable biometeorological stations and deployed across urban landscapes to build human-relevant heat sensing networks.


Assuntos
Calor Extremo , Radiometria , Humanos , Radiometria/instrumentação , Radiometria/métodos , Arizona , Vento , Pedestres
3.
Nutr Health ; : 2601060221150303, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36632648

RESUMO

Background: Education may improve hiker safety on trails. Aim: To investigate the impact of an educational video on hiker fluid selection and fluid consumption in a hot environment. Methods: Quasi-experimental field study at hiking trails in which the intervention group (INT) viewed a three-minute hydration education video, whereas the control group (CON) did not. Before the hike, all hikers were asked if they wanted to select extra fluid, which was provided by the research team. Results: A total of n = 97 hikers participated in the study, with n = 56 in INT (32 male) and n = 41 in CON (25 male). Despite absolute differences in environmental conditions, the differences fell within the same WBGT category. The total amount of fluid brought to the trails by participants was different between INT: 904 (503-1758) mL and CON: 1509 (880-2176) mL (P = 0.006), but participants in the INT group selected extra fluid (41%; n = 23) significantly more often when compared with participants in the CON group (7%; n = 3; P < 0.001). As a result, there was no difference in the amount of fluid brought on the trail between INT: 1047 (611-1936) mL and CON: 1509 (932-2176) mL (P = 0.069), nor for fluid consumption between INT: 433 (289-615) mL/h and CON: 489 (374-719) mL/h (P = 0.18). Conclusions and Implications: A 3-min educational video may encourage hikers to select additional fluid before the start of their hike but does not appear to increase fluid intake.

4.
Int J Biometeorol ; 66(3): 627-640, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743221

RESUMO

Skin cancers are strongly linked to personal exposure to ultraviolet (UV) radiation, yet UV exposure is also the most preventable risk factor. People are exposed to UV rays when they engage in outdoor activities, particularly exercise, which is an important health behavior. Thus, researchers and the general public have shown increasing interest in measuring UV exposure using wearable sensors during outdoor physical activity. However, minimal research exists at the intersection of UV sensors, personal exposure, adaptive behavior due to exposures, and risk of skin damage. Recent years have seen an influx of new consumer-based and research-based UV-sensing technologies with wide-ranging form factors and purposes to fill this research gap, yet a thorough review of available sensors for specific purposes does not exist. Hence, the overall goal of this state-of-the-art review is to synthesize the current academic and gray literature surrounding personal UV-sensing technologies. Peer-reviewed journal articles and "gray literature," such as working papers, manuals, and UV sensor websites, were reviewed, assessing attributes of UV wearables marketed for research use, personal use, or both. Overall, 13 wearable UV sensors are available for personal use and/or research applications. These sensors vary from electronic to photochromic, with large differences in price, data outputs, accuracy, and precision. Recommendations are provided for which sensors are most suitable for various types of research or public use. Notably, the review findings will help guide researchers in future studies assessing UV exposure during physical activity.


Assuntos
Raios Ultravioleta , Dispositivos Eletrônicos Vestíveis , Exercício Físico , Humanos
5.
Int J Biometeorol ; 66(2): 357-369, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33244662

RESUMO

Thermal comfort is an important determinant of quality of life and economic vitality in cities. Strategies to improve thermal comfort may become a more critical part of urban sustainability efforts with projections of continued urban growth and climate change. A case study was performed in the hot, dry summertime climate of Tempe, Arizona to quantify the influence of evaporative misters on the thermal environment in outdoor restaurants and to understand business managers' motivations to use misters. Microclimate measurements (air temperature (Ta), wind speed, relative humidity, globe temperature) were taken at five restaurants midday within four exposures: misted sun, misted shade, sun only, and shade only. We assessed Ta, mean radiant temperature (MRT), universal thermal climate index (UTCI), and physiological equivalent temperature (PET) between these four conditions within each location. Misters improved thermal comfort across all days, sites, and exposure conditions. MRT was on average 7.6 °C lower in misted locations, which significantly lowered average PET (- 6.5 °C) and UTCI (- 4.4 °C) (p < 0.05). Thermal comfort was most improved using mist in combination with shade. Under such conditions, PET and UTCI were reduced by 15.5 °C and 9.7 °C (p < 0.05), respectively. Business managers identified customer comfort and increased seating capacity as the principal factors for mister use. Esthetics of misters further encouraged use, while cost and environmental concerns were perceived to be less important. While this case study demonstrates value in outdoor misting in a hot, dry climate, additional work is needed to more fully evaluate tradeoffs between cost, water use, and comfort with continuing urban growth.


Assuntos
Motivação , Sensação Térmica , Cidades , Qualidade de Vida , Crescimento Sustentável , Temperatura
6.
Int J Biometeorol ; 65(6): 967-983, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33909138

RESUMO

Thermal comfort research has utilized various sensors and models to estimate the mean radiant temperature (MRT) experienced by a human, including the standard black globe thermometer (SGT), acrylic globe thermometers (AGT), and cylindrical radiation thermometers (CRT). Rather than directly measuring radiation, a temperature is measured in the center of these low-cost sensors that can be related to MRT after theoretically accounting for convection. However, these sensors have not been systematically tested under long-term hot and clear conditions. Further, under variable weather conditions, many issues can arise due to slow response times, shape, inaccuracies in material properties and assumptions, and color (albedo, emissivity) inconsistencies. Here, we assess the performance of MRT produced by various heat transfer models, with and without new average surface temperature ([Formula: see text]) correction factors, using five instruments-the SGT (15 cm, black), tan and black CRTs, gray and black 38 mm AGTs-compared to 3D integral radiation measurements. Measurements were taken on an unobscured roof throughout summer-to-early-fall months in Tempe, Arizona, examining 58 full-sun days. Deviations without correcting for asymmetrical surface heating-found to be the main cause of errors-reached ± 15-20 °C MRT. By accounting for asymmetric heating through [Formula: see text] calculations, new corrective algorithms were derived for the low-cost sensor models. Results show significant improvements in the estimated MRT error for each sensor (i.e., ∆MRTmodel - IRM) when applying the [Formula: see text] corrections. The tan MRTCRT improved from 1.9 ± 6.2 to -0.1 ± 4.4 °C, while the gray AGT and SGT showed improvements from -1.6 ± 7.2 to -0.4 ± 6.3 °C and - 6.6 ± 6.4 to - 0.03 ± 5.7 °C, respectively. The new corrections also eliminated dependence on other meteorological factors (zenith, wind speed). From these results, we provide three simple equations for CRT, AGT, and SGT correction for future research use under warm-hot and clear conditions. This study is the most comprehensive empirical assessment of various low-cost instruments with broad applicability in urban climate and biometeorological research.


Assuntos
Temperatura Alta , Luz Solar , Arizona , Humanos , Temperatura , Vento
7.
Health Care Women Int ; 42(4-6): 657-677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32956026

RESUMO

In this study the authors examined how maternal health workers (MHWs) perceive the health risks of extreme heat exposure to pregnant women and fetuses. The authors conducted interviews with 12 MHWs (including midwives and doulas) in El Paso, Texas. Using qualitative analysis, the researchers identified numerous themes. Although heat was not communicated as a major health risk, participants expressed some concern with growing heat exposure and communicated standard protective measures. While all participants were familiar with some heat illness symptoms, they were generally unaware of their clients' vulnerability. MHWs' minimal heat-risk knowledge leaves pregnant women and developing fetuses at risk of preventable harm.


Assuntos
Temperatura Alta , Saúde Materna , Agentes Comunitários de Saúde , Família , Feminino , Humanos , Gravidez , Pesquisa Qualitativa
8.
Int J Biometeorol ; 63(3): 405-427, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30710251

RESUMO

Exertional heat illness (EHI) risk is a serious concern among athletes, laborers, and warfighters. US Governing organizations have established various activity modification guidelines (AMGs) and other risk mitigation plans to help ensure the health and safety of their workers. The extent of metabolic heat production and heat gain that ensue from their work are the core reasons for EHI in the aforementioned population. Therefore, the major focus of AMGs in all settings is to modulate the work intensity and duration with additional modification in adjustable extrinsic risk factors (e.g., clothing, equipment) and intrinsic risk factors (e.g., heat acclimatization, fitness, hydration status). Future studies should continue to integrate more physiological (e.g., valid body fluid balance, internal body temperature) and biometeorological factors (e.g., cumulative heat stress) to the existing heat risk assessment models to reduce the assumptions and limitations in them. Future interagency collaboration to advance heat mitigation plans among physically active population is desired to maximize the existing resources and data to facilitate advancement in AMGs for environmental heat.


Assuntos
Exercício Físico , Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta , Aclimatação , Atletas , Guias como Assunto , Humanos , Militares , Saúde Ocupacional , Estados Unidos
9.
Environ Health ; 17(1): 45, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724242

RESUMO

BACKGROUND: Extreme heat is often associated with elevated levels of human mortality, particularly across the mid-latitudes. Los Angeles, CA exhibits a unique, highly variable winter climate, with brief periods of intense heat caused by downsloping winds commonly known as Santa Ana winds. The goal is to determine if Los Angeles County is susceptible to heat-related mortality during the winter season. This is the first study to specifically evaluate heat-related mortality during the winter for a U.S. city. METHODS: Utilizing the Spatial Synoptic Classification system in Los Angeles County from 1979 through 2010, we first relate daily human mortality to synoptic air mass type during the winter season (December, January, February) using Welch's t-tests. However, this methodology is only somewhat effective at controlling for important inter- and intra-annual trends in human mortality unrelated to heat such as influenza outbreaks. As a result, we use distributed lag nonlinear modeling (DLNM) to evaluate if the relative risk of human mortality increases during higher temperatures in Los Angeles, as the DLNM is more effective at controlling for variability at multiple temporal scales within the human mortality dataset. RESULTS: Significantly higher human mortality is uncovered in winter when dry tropical air is present in Los Angeles, particularly among those 65 years and older (p < 0.001). The DLNM reveals the relative risk of human mortality increases when above average temperatures are present. Results are especially pronounced for maximum and mean temperatures, along with total mortality and those 65 + . CONCLUSIONS: The discovery of heat-related mortality in winter is a unique finding in the United States, and we recommend stakeholders consider warning and intervention techniques to mitigate the role of winter heat on human health in the County.


Assuntos
Calor Extremo/efeitos adversos , Mortalidade , Vento , Humanos , Umidade , Los Angeles/epidemiologia , Dinâmica não Linear , Risco , Estações do Ano
10.
Int J Biometeorol ; 62(1): 139-140, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25814359

RESUMO

An update from the new Chair of the Students and New Professionals Group of the International Society of Biometeorology.


Assuntos
Meteorologia , Sociedades Científicas , Humanos , Estudantes
11.
Int J Biometeorol ; 62(1): 69-84, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28190180

RESUMO

The environmental drivers and mechanisms of influenza dynamics remain unclear. The recent development of influenza surveillance--particularly the emergence of digital epidemiology--provides an opportunity to further understand this puzzle as an area within applied human biometeorology. This paper investigates the short-term weather effects on human influenza activity at a synoptic scale during cold seasons. Using 10 years (2005-2014) of municipal level influenza surveillance data (an adjustment of the Google Flu Trends estimation from the Centers for Disease Control's virologic surveillance data) and daily spatial synoptic classification weather types, we explore and compare the effects of weather exposure on the influenza infection incidences in 79 cities across the USA. We find that during the cold seasons the presence of the polar [i.e., dry polar (DP) and moist polar (MP)] weather types is significantly associated with increasing influenza likelihood in 62 and 68% of the studied cities, respectively, while the presence of tropical [i.e., dry tropical (DT) and moist tropical (MT)] weather types is associated with a significantly decreasing occurrence of influenza in 56 and 43% of the cities, respectively. The MP and the DP weather types exhibit similar close positive correlations with influenza infection incidences, indicating that both cold-dry and cold-moist air provide favorable conditions for the occurrence of influenza in the cold seasons. Additionally, when tropical weather types are present, the humid (MT) and the dry (DT) weather types have similar strong impacts to inhibit the occurrence of influenza. These findings suggest that temperature is a more dominating atmospheric factor than moisture that impacts the occurrences of influenza in cold seasons.


Assuntos
Influenza Humana/epidemiologia , Tempo (Meteorologia) , Monitoramento Epidemiológico , Humanos , Estudos Retrospectivos
12.
Public Health ; 161: 138-146, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29290376

RESUMO

OBJECTIVES: To provide a primer on the physical characteristics of heat from a biometeorological perspective for those interested in the epidemiology of extreme heat. STUDY DESIGN: A literature search design was used. METHODS: A review of the concepts of heat, heat stress and human heat balance was conducted using Web of Sciences, Scopus and PubMed. RESULTS: Heat, as recognised in the field of human biometeorology, is a complex phenomenon resulting from the synergistic effects of air temperature, humidity and ventilation levels, radiation loads and metabolic activity. Heat should therefore not be conflated with high temperatures. A range of empirical, direct and rational heat stress indices have been developed to assess heat stress. CONCLUSION: The conceptualisation of heat stress is best described with reference to the human heat balance which describes the various avenues for heat gain to and heat loss from the body. Air temperature alone is seldom the reason for heat stress and thus heat-related health effects.


Assuntos
Pesquisa Biomédica , Transtornos de Estresse por Calor/epidemiologia , Temperatura Alta/efeitos adversos , Saúde Pública , Humanos
14.
Int J Biometeorol ; 61(Suppl 1): 81-88, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710523

RESUMO

The first decade of the twenty-first century saw remarkable technological advancements for use in biometeorology. These emerging technologies have allowed for the collection of new data and have further emphasized the need for specific and/or changing systems for efficient data management, data processing, and advanced representations of new data through digital information management systems. This short communication provides an overview of new hardware and software technologies that support biometeorologists in representing and understanding the influence of atmospheric processes on living organisms.


Assuntos
Invenções , Meteorologia/tendências , Animais , Computadores , Humanos , Software , Tecnologia/tendências
15.
Int J Biometeorol ; 58(2): 277-308, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550042

RESUMO

Here we present, for the first time, a glossary of biometeorological terms. The glossary aims to address the need for a reliable source of biometeorological definitions, thereby facilitating communication and mutual understanding in this rapidly expanding field. A total of 171 terms are defined, with reference to 234 citations. It is anticipated that the glossary will be revisited in coming years, updating terms and adding new terms, as appropriate. The glossary is intended to provide a useful resource to the biometeorology community, and to this end, readers are encouraged to contact the lead author to suggest additional terms for inclusion in later versions of the glossary as a result of new and emerging developments in the field.


Assuntos
Meteorologia/classificação , Terminologia como Assunto , Vocabulário Controlado
16.
Environ Health Perspect ; 132(1): 15003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261303

RESUMO

BACKGROUND: Extreme heat and air pollution are important human health concerns; exposure can affect mental and physical well-being, particularly during periods of co-occurrence. Yet, the impacts on people are largely determined by underlying health conditions, coupled with the length and intensity of exposure. Preexisting adverse health conditions and prolonged exposure times are more common for people experiencing homelessness, particularly those with intersectional identity characteristics (e.g., disease, ability, age, etc.). Partially due to methodological limitations, such as data scarcity, there is a lack of research at the intersection of this at-risk population within the climate-health domain. OBJECTIVES: We have three distinct objectives throughout this article: a) to advance critical discussions around the state of concurrent high heat and air pollution exposure research as it relates to people experiencing homelessness; b) to assert the importance of heat and air pollution exposure research among a highly vulnerable, too-often homogenized population-people experiencing homelessness; and c) to underline challenges in this area of study while presenting potential ways to address such shortcomings. DISCUSSION: The health insights from concurrent air pollution and heat exposure studies are consequential when studying unhoused communities who are already overexposed to harmful environmental conditions. Without holistic data sets and more advanced methods to study concurrent exposures, appropriate and targeted prevention and intervention strategies cannot be developed to protect this at-risk population. We highlight that a) concurrent high heat and air pollution exposure research among people experiencing homelessness is significantly underdeveloped considering the pressing human health implications; b) the severity of physiological responses elicited by high heat and air pollution are predicated on exposure intensity and time, and thus people without means of seeking climate-controlled shelter are most at risk; and c) collaboration among transdisciplinary teams is needed to resolve data resolution issues and enable targeted prevention and intervention strategies. https://doi.org/10.1289/EHP13402.


Assuntos
Poluição do Ar , Calor Extremo , Pessoas Mal Alojadas , Humanos , Temperatura Alta , Clima
17.
Sci Total Environ ; 923: 171525, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458460

RESUMO

Extreme heat is a current and growing global health concern. Current heat exposure models include meteorological and human factors that dictate heat stress, comfort, and risk of illness. However, radiation models simplify the human body to a cylinder, while convection ones provide conflicting predictions. To address these issues, we introduce a new method to characterize human exposure to extreme heat with unprecedented detail. We measure heat loads on 35 body surface zones using an outdoor thermal manikin ("ANDI") alongside an ultrasonic anemometer array and integral radiation measurements (IRM). We show that regardless of body orientation, IRM and ANDI agree even under high solar conditions. Further, body parts can be treated as cylinders, even in highly turbulent flow. This geometry-rooted insight yields a whole-body convection correlation that resolves prior conflicts and is valid for diverse indoor and outdoor wind flows. Results will inform decision-making around heat protection, adaptation, and mitigation.


Assuntos
Calor Extremo , Humanos , Manequins , Vento
18.
Environ Res ; 126: 66-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24012249

RESUMO

BACKGROUND: Synoptic circulation patterns (large-scale weather systems) affect ambient levels of air pollution, as well as the relationship between air pollution and human health. OBJECTIVE: To investigate the air pollution-mortality relationship within weather types and seasons, and to determine which combination of atmospheric conditions may pose increased health threats in the elderly age categories. METHODS: The relative risk of mortality (RR) due to air pollution was examined using Poisson generalized linear models (GLMs) within specific weather types. Analysis was completed by weather type and age group (all ages, ≤64, 65-74, 75-84, ≥85 years) in ten Canadian cities from 1981 to 1999. RESULTS: There was significant modification of RR by weather type and age. When examining the entire population, weather type was shown to have the greatest modifying effect on the risk of dying due to ozone (O3). This effect was highest on average for the dry tropical (DT) weather type, with the all-age RR of mortality at a population weighted mean (PWM) found to be 1.055 (95% CI 1.026-1.085). All-weather type risk estimates increased with age due to exposure to carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). On average, RR increased by 2.6, 3.8 and 1.5% for the respective pollutants between the ≤64 and ≥85 age categories. Conversely, mean ozone estimates remained relatively consistent with age. Elevated levels of air pollution were found to be detrimental to the health of elderly individuals for all weather types. However, the entire population was negatively effected by air pollution on the hot dry (DT) and hot humid (MT) days. CONCLUSIONS: We identified a significant modification of RR for mortality due to air pollution by age, which is enhanced under specific weather types. Efforts should be targeted at minimizing pollutant exposure to the elderly and/or all age groups with respect to weather type in question.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Gases/toxicidade , Mortalidade , Tempo (Meteorologia) , Idoso , Idoso de 80 Anos ou mais , Canadá , Cidades/estatística & dados numéricos , Humanos , Pessoa de Meia-Idade
19.
Environ Health Perspect ; 131(5): 55001, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37255302

RESUMO

BACKGROUND: As atmospheric greenhouse gas concentrations continue to rise, temperature and humidity will increase further, causing potentially dire increases in human heat stress. On physiological and biophysical grounds, exposure to higher levels of humidity should worsen heat stress by decreasing sweat evaporation. However, population-scale epidemiological studies of heat exposure and response often do not detect associations between high levels of humidity and heat-related mortality or morbidity. These divergent, disciplinary views regarding the role of humidity in heat-related health risks limit confidence in selecting which interventions are effective in reducing health impacts and in projecting future heat-related health risks. OBJECTIVES: Via our multidisciplinary perspective we seek to a) reconcile the competing realities concerning the role of humidity in heat-related health impacts and b) help ensure robust projections of heat-related health risks with climate change. These objectives are critical pathways to identify and communicate effective approaches to cope with present and future heat challenges. DISCUSSION: We hypothesize six key reasons epidemiological studies have found little impact of humidity on heat-health outcomes: a) At high temperatures, there may be limited influence of humidity on the health conditions that cause most heat-related deaths (i.e., cardiovascular collapse); b) epidemiological data sets have limited spatial extent, a bias toward extratropical (i.e., cooler and less humid), high-income nations, and tend to exist in places where temporal variations in temperature and humidity are positively correlated; c) analyses focus on older, vulnerable populations with sweating, and thus evaporative, impairments that may be further aggravated by dehydration; d) extremely high levels of temperature and humidity (seldom seen in the historical record) are necessary for humidity to substantially impact heat strain of sedentary individuals; e) relationships between temperature and humidity are improperly considered when interpreting epidemiological model results; and f) sub-daily meteorological phenomena, such as rain, occur at high temperatures and humidity, and may bias epidemiological studies based on daily data. Future research must robustly test these hypotheses to advance methods for more accurate incorporation of humidity in estimating heat-related health outcomes under present and projected future climates. https://doi.org/10.1289/EHP11807.


Assuntos
Temperatura Alta , Humanos , Umidade , Temperatura , Risco
20.
Nat Commun ; 14(1): 1467, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928319

RESUMO

Urban overheating is an increasing threat to people, infrastructure, and the environment. Common heat mitigation strategies, such as green infrastructure, confront space limitations in current car-centric cities. In 2020, the City of Phoenix, Arizona, piloted a "cool pavement" program using a solar reflective pavement seal on 58 km of residential streets. Comprehensive micrometeorological observations are used to evaluate the cooling potential of the reflective pavement based on three heat exposure metrics-surface, air, and mean radiant temperatures-across three residential reflective pavement-treated and untreated neighborhoods. In addition, the solar reflectivity of reflective pavement is observed over 7 months across eight residential neighborhoods. Results are synthesized with the literature to provide context-based reflective pavement implementation guidelines to mitigate urban overheating where common strategies cannot be applied. The three most important contextual factors to consider for effective implementation include urban location, background climate type, and heat exposure metric of interest.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa